
Homework 5: Brick Out

EECS 211

Winter 2019

Due: February 20, 2019 at 11:59 PM
Partners: Yes; register on GSC before submission

Contents

1 Purpose 1

2 Getting it 1

3 Game description 1
3.1 Physics 2
3.2 Geometry 2

4 Design orientation 3
4.1 The model 3
4.2 The UI 3

5 Implementation hints 3
5.1 The ball 3

– above block() 3
– Ball::top left() 3
– Ball::hits bottom() 3
– Ball::hits top() 3
– Ball::hits side() 4
– Ball::next() 4
– Ball::hits block() 4
– Ball::destroy brick() 4
– operator==(Ball const&, Ball const&) 4

5.2 The model 4
– Model::Model(Geometry const&) . . . 4
– Model::paddle to() 5
– Model::update() 5

5.3 The UI 5
– Ui::draw() 5
– Ui::on key() 5
– Ui::on frame() 5
– Ui::on mouse up() 5

– Ui::on mouse move() 5

6 Reference 5
6.1 The GE211 geometry types 5

– ge211::Position 5
– ge211::Dimensions 6
– ge211::Rectangle 6

7 Deliverables and evaluation 6

8 Submission 7

1 Purpose

The primary goal of this assignment is to get you
programming in C++ with member functions and
std::vector. Secondarily, we want to familiarize you
with the mechanics of GE211.

2 Getting it

Download the project ZIP file to your computer1, un-
zip it, and open the resulting directory in CLion2.

3 Game description

In this classic arcade game, the player seeks to destroy
a field of bricks in the top portion of the screen by hit-
ting them with a ball, while controlling a horizontally-
moving paddle to prevent the ball from reaching the
bottom of the screen.

1To complete this homework on your own computer, you need a C++14 toolchain and the SDL2 libraries as in Lab 4. If you need to
work on a lab computer instead, see this Piazza post.

2Be careful that you open the hw05 directory and not some sub- or superdirectory thereof. If you do, CLion will create a bogus
CMakeLists.txt that won’t be able to find SDL2.

1

http://users.eecs.northwestern.edu/~jesse/course/eecs211/hw/hw05.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/hw/hw04.pdf
https://piazza.com/class/jpk1il7enus4qr?cid=455

3.1 Physics 2

When the game starts, a grid of rectangular bricks
appears in the top portion of the screen, and the pad-
dle, also a rectangle, appears at the bottom of the
screen. The paddle moves horizontally with the x
coordinate of the mouse pointer, but its y coordinate
never changes.

Initially the ball is “dead”—rather then bouncing
around, it sticks to the paddle as the paddle follows
the mouse. When the player clicks the mouse or hits
the space key, the ball is launched and travels upward
toward the bricks. It then proceeds to bounce off of
bricks, the paddle, and the top and sides of the screen,
destroying each brick that it collides with, until it
reaches the bottom of the screen. At that point the
ball is again dead and stuck the paddle. No bricks are
restored, however, and the player may launch the ball
again.

3.1 Physics

Physics in the BRICK OUT world is highly idealized.
For the purpose of detecting collisions, we approxi-
mate the ball as its bounding box3. The ball’s mass
is insignificant compared to every object it meets, so
it rebounds fully and they never budge. Collisions
with the top and sides of the screen are perfectly
elastic and perfectly conventional—the top reflects
vertically and the sides reflect horizontally. But colli-
sions with blocks, both the paddle and the bricks, are
a bit weirder.

Upon striking (and destroying) a brick, the ball
is reflected both vertically and horizontally, regard-
less of which edge of the brick it contacts. In other
words, both the x and y components of its velocity
are negated and it returns from whence it came.

When the ball collides with the paddle, the reflec-
tion is perfectly elastic in the y dimension, but it gets
a random “boost” in the x dimension. In particular,
the horizontal component of its velocity is adjusted
by the addition of a random small integer (balanced
between negative and positive to produce a random
walk with constant expectation).

3.2 Geometry

This diagram shows a 5-by-5 field of gray bricks (at
the top), the yellow paddle (at the bottom), and the
red ball in its dead position:

Unlike the diagram above, in the default geometry
the brick field is 10-by-10. In addition to the numbers
of columns and rows of bricks, the geometry lets you
control:

• the dimensions of the screen;

• the distance from the top of the screen to the
top of the brick field;

• the distance from the sides of the screen to the
sides of the brick field;

• the distance from the top of the screen to bottom
of the brick field;

• the dimensions of the gaps between the bricks;

• the distance from the bottom of the screen to
the bottom of the paddle;

• the dimensions of the paddle;

• the radius of the ball;

• the initial velocity of the ball once it’s launched
from the paddle; and

• the maximum absolute “boost” value for when
the ball hits the paddle.

From these properties the Geometry class computes
the dimensions of the bricks and the initial position of
the paddle, which cannot be adjusted independently.

You should test your code, both model and view,
with varying geometries. Not all combinations are
sensible, but your code should work correctly within
a reasonable range.

3The bounding box of a figure is the smallest rectangle enclosing it; for the ball it’s a square sharing its center whose side length is
twice the radius of the ball.

3

4 Design orientation

The BRICK OUT game is composed of two major com-
ponents: the model, which keeps track of the state
of the game independent of how it is viewed or con-
trolled, and the UI, which provides an interface to use
the model by specifying how it appears on the screen
and reacts to our input.

4.1 The model

The model (struct Model in src/model.{h,cpp}) rep-
resents the game’s logical state and implements its
rules in a UI-independent manner. For BRICK OUT, it
keeps track of:

• the locations and sizes of all the bricks,

• the location and size of the paddle (the thing at
the bottom that you control), and

• the state of the ball, including whether it’s in
play, and its size, location, and velocity.

As far as operations, the model knows how to put
a dead ball back into play, how to move the paddle
to a new position (bringing a dead ball along with it),
and how to update its own state for each animation
frame.

Because the state and behavior of the ball ac-
count for much of the complexity of the model, the
ball is factored out into its own struct Ball (in
src/ball.{h,cpp}). It defines its own set of operations,
mainly for detecting collisions with bricks, the paddle,
and the edges of the screen.

The model is also responsible for storing the game
geometry parameters (e.g., the sizes of things such
as bricks, the paddle, the margins, and the win-
dow), which are grouped into a struct Geometry (in
src/geometry.{h,cpp}). The geometry is passed to the
Model constructor and is then fixed for the duration
of the game.

4.2 The UI

The UI (struct Ui in src/ui.{h,cpp}) combines the
view and controller components of the traditional
model–view–controller (MVC) design, along with a
reference to the model.

The view state defines the sprites used to represent
the game entities on the screen, as well as two oper-
ations: a drawing operation that places those sprites
based on the state of the model, and a simple func-
tion to convey the game dimensions from the model
geometry to GE211.

The controller portion of the UI is stateless and
defines four operations—three for reacting to user
input and one for reacting to the passage of time. It
reacts to two key events: it exits on q and launches
a possibly-dead ball on space. It also launches the
ball on mouse clicks. When the mouse moves, it tells
the model to move the paddle. And with each frame
(typically 1/60 s), it asks the model to update itself to
reflect the passage of time.

5 Implementation hints

There is no specification in this document—instead,
the functions you need to implement are specified in
the header files src/ball.h, src/model.h, and src/ui.h, so
you should read those carefully. This section provides
supplementary material to help you figure out how to
implement what the header comments specify.

5.1 The model: struct Ball and friends

The implementation of model logic related to the ball
is in src/ball.cpp. There are seven Ball member func-
tions and two free functions for you to complete.

static Position
above_block(Block const&,

Geometry const &)

This function is a helper for Ball’s constructor that
computes where the ball should be when it’s dead—its
bottom centered 1 pixel above the top center of the
paddle.

Given block (a ge211::Rectangle representing
the position and dimensions of the paddle), start at
its top-left corner (Rectangle::top_left()), move
to the right (Position::right_by()) by half the
width of block (Rectangle::width), then move up
(Position::up_by()) by 1 plus the radius of the ball
(Geometry::ball_radius).

Ball:: top_left () const

Returns the position at the upper-left corner of the
ball’s bounding box. This is the position one ball ra-
dius to the left and one ball radius above the center
of the ball.

Ball:: hits_bottom(
Geometry const &) const

The ball hits the bottom when the y coordinate of its
bottom exceeds the height of the scene.

https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#a81b45d5896ffcbaf9b315c2c1592c2e7
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__position.html#a6b0b2fde1167a82dff1739875f80e1e2
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#afacc5a60c416c4e435b3e7b7634e11d9
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__position.html#a93838ddeb712f60262c2b3f51abd52ea

5.2 The model 4

Ball:: hits_top(
Geometry const &) const

The ball hits the top when the y coordinate of its top
is less than 0. (Note that the parameter isn’t used.)

Ball:: hits_side(
Geometry const &) const

The ball hits a side when the x coordinate of its left
side is less than 0 or the x coordinate of its right side
is greater than the width of the scene.

Ball::next() const

Recall that this is a const Ball*, and you can create
a copy of a ball with the copy constructor. So to get a
new Ball to return, you can write

Ball result (*this);

Ball:: hits_block(Block const &) const

As with the edge collision functions, we want to use
the ball’s bounding box, which is the square whose
top is center_.y - radius_, whose left is center_.x
- radius_, whose bottom is center_.y + radius_,
and whose right is center_.x + radius_. We use the
bounding box so that we can check for the intersec-
tion of two rectangles, which is easier than checking
for the intersection of a rectangle and a circle.

One way to think of that is that the rectangles
don’t intersect if either of these is true:

• The right side of either rectangle is to the left of
the left side of the other.

• The bottom of either rectangle is above the top
of the other.

Otherwise, they do.

Ball:: destroy_brick(
std::vector <Block >&) const

Once you’ve written Ball::hits_block, finding an
element of bricks that collides with this ball isn’t
hard—use a for-each loop—but how to remove it once
you find it? The more obvious solution may be to
shift all the elements after it to the left, but that’s
awkward, and there’s a cleaner way when the order
of the elements of the vector doesn’t matter:

1. Swap the hit brick with the last brick in the
vector (bricks.back()) using std::swap.

2. Now the hit brick is in the back, so you can
remove it with std::vector::pop_back().

3. return true immediately after the pop_back().
The loop condition won’t adjust to the dimin-
ished vector, so if you keep iterating after re-
moving an element then you’ll go out of bounds.
One brick is enough.

operator ==(Ball const&, Ball const &)

This can be written as a four-way && expression.

5.2 The model: struct Model

The implementation of the remaining model logic is in
src/model.cpp. There are two Model member functions
and one constructor for you to complete.

Model::Model(Geometry const &)

Constructs a Model from the given Geometry. Note
that the Geometry is passed by const& but Model saves
its own copy of it.

This much is done for you: The geometry_,
paddle_, and ball_ member variables are initialized
in a member initializer list, not in the body of the
constructor:

• The paddle is initialized with its top-left at
geometry_.paddle_top_left0() and with di-
mensions geometry_.paddle_dims_.

• The ball is initialized with the state of the paddle
and the geometry.

What you need to do: In the body of the con-
structor, iterate through the positions of all the bricks
(geometry_.brick_rows * geometry_.brick_cols of
them) and push_back each into the bricks_ vector.
The details:

• Each brick should have dimensions
geometry_.brick_dims().

• The first (top-left–most) brick should have its
top left at the position {geometry_.side_mar-
gin, geometry_.top_margin}.

• You will need nested loops to create all the
bricks in each row and column, but note that
the order in the vector doesn’t matter.

https://en.cppreference.com/w/cpp/container/vector/back
https://en.cppreference.com/w/cpp/algorithm/swap
https://en.cppreference.com/w/cpp/container/vector/pop_back

5.3 The UI 5

• The offset between each brick and the next
is given by the dimensions of each brick plus
geometry_.brick_spacing. Or in other words,
the x offset is geometry_.brick_spacing.width
+ geometry_.brick_dims().width, and the y
offset is the same but with heights.

Model:: paddle_to(int x)

In addition to moving the paddle, this may need to
move the ball. If the ball isn’t live then then it needs to
follow the paddle, which is best done by constructing
a new Ball and assigning it to ball_.

Model:: update(int boost)

The description in src/model.h is pretty detailed, so
there’s not too much else to say. You probably want
to call Ball::next() const at most twice: once spec-
ulatively as soon as you know that the ball is live, and
once again at the end, storing the result back to the
ball for real that time.

5.3 The UI

The implementation of the user interface, including
both drawing and reacting to input, is in src/ui.cpp.
There are five Ui member functions for you to com-
plete.

Ui::draw(ge211:: Sprite_set &)

Use Sprite_set::add_sprite(Sprite&, Position)
to add each sprite to sprites. Note that add_sprite
positions the sprite using the top-left corner of the its
bounding box, so you don’t want to position a circle
by its center.

Ui:: on_key(ge211::Key)

The starter code already quits on q. To make a dead
ball start moving on spacebar, you need to check for
ge211::Key::code('␣') and call model_.launch()
when you get it. (That’s a “visible” space character,
not an underscore.)

Ui:: on_frame(double)

To get a random number, you should use a
ge211::Random object, which provides the member
function

int Random::between(int min, int max);

which returns a random int from the closed interval
[min, max].

So how can you get access to a ge211::Random
object? Ui’s base class ge211::Abstract_game con-
structs and stores one for us, granting us by-reference
access via its get_random() member function4. For
example, get_random().between(10, 20) returns a
random number between 10 and 20.

Ui:: on_mouse_up(ge211:: Mouse_button ,
ge211:: Position)

Makes the ball live via Model::launch().

Ui:: on_mouse_move(ge211:: Position)

Informs the model of the mouse position
(and thus the desired paddle position) via
Model::paddle_to(Position).

6 Reference

6.1 The GE211 geometry types

The GE211 library defines three types for representing
the geometry of points and rectangles. You will need
to use these types to calculate the positions of game
entities and place them on the screen, so read on.

struct ge211:: Position

For representing 2-D positions, either logical or in
screen pixels, GE211 provides the Position struct.
While the actual definition is more complicated, the
basic idea can be understood as:

struct ge211:: Position
{

int x;
int y;

};

4That may look like a free function call, not a member function call, but it’s actually being called on this, since members of a base
class (from which we derived our struct) are members of the derived struct as well.

https://tov.github.io/ge211/classge211_1_1_sprite__set.html#a2240fce09cf44668dcb2e5605676935a
https://tov.github.io/ge211/classge211_1_1_random.html
https://tov.github.io/ge211/classge211_1_1_random.html#a808fbdef59773f1b4e91ab3c6498d597
https://tov.github.io/ge211/classge211_1_1_abstract__game.html
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#ae427d958ed5a0ae77c6a948650cca7bf
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__position.html

6

general term memory time C++ STL GE211
point pointer time point iterator Position

displacement integer duration difference type Dimensions
span array time span range Rectangle

Figure 1: Affine spaces

The Position struct provides a variety of mem-
ber functions, such as Position::up_by(int) const
and Position::down_right_by(Dimensions) const,
for shifting to related positions.

struct ge211:: Dimensions

For representing the width and height of a 2-D ob-
jects (such as bounding boxes), GE211 provides the
Dimensions struct. As with Position, the real defini-
tion is a bit more complicated, but you can think of it
as:

struct ge211:: Dimensions
{

int width;
int height;

};

Why do we need Dimensions if we have Position?
Aren’t these basically the same thing? Yes, each is a
pair of ints, one with a horizontal sense and the other
vertical, but semantically they are different and their
operations differ. For example, it makes sense to add
two Dimensions, or to multiply a Dimensions by a
scalar:

operator+(Dimensions, Dimensions);
operator*(Dimensions, double);

Both of these operations yield a Dimensions. But
it doesn’t mean anything to add two Positions, or
to scale a Position. So having separate types for
Position and Dimensions helps us keep the two con-
cepts precise and prevents at least some kinds of non-
sense.

The algebra of positions and dimensions is a two
dimensional generalization of the algebra of pointers
and integer offsets (see Fig. 1), which can help us un-
derstand what other operations are meaningful. Like
adding an integer to a pointer to offset the pointer,
it makes sense to add a Dimensions to a Position to
get an offset Position. And as the difference between
two pointers is an integer, the difference between two
Positions is a Dimensions.

struct ge211:: Rectangle

In BRICK OUT, we use ge211::Rectangles to rep-
resent blocks (both bricks and the paddle), so for
convenience, src/ball.h typedefs Block to mean
ge211::Rectangle.

A Rectangle is essentially a pairing of a Position
(its top left corner) with a Dimensions. You can create
one from those parts and project each part back out.
To create one you might use

static Rectangle
Rectangle::from_top_left(Position,

Dimensions);

among other static factory functions. To project, you
will want member functions such as

Dimensions Rectangle::dimensions() const;
and

Position Rectangle::top_left() const;
among others.

You can also access the data members of a
ge211::Rectangle directly, but note that they don’t
actually include a Rectangle and a Dimensions, but
rather both flattened together:

struct ge211:: Rectangle
{

int x;
int y;
int width;
int height;

};

7 Deliverables and evaluation

For this homework you must:

1. Complete the seven unimplemented Ball
member functions and two free func-
tions (above_block() and operator==(Ball
const&, Ball const&)) in src/ball.cpp.

2. Complete the unimplemented Model constructor
and two member functions in src/model.cpp.

3. Complete the five unimplemented Ui member
functions in src/ui.cpp.

https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__position.html#a93838ddeb712f60262c2b3f51abd52ea
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__position.html#a0e829325afc6886173a22cc346b379b6
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__dimensions.html
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__dimensions.html
https://tov.github.io/ge211/namespacege211_1_1geometry.html#a23ca88cda7119af9086fd908165be569
https://tov.github.io/ge211/namespacege211_1_1geometry.html#a03858599d548dac035f25fb12e94c4ea
https://tov.github.io/ge211/namespacege211_1_1geometry.html#a4a88b48d7c63284b0dbb6c4bd14908cc
https://tov.github.io/ge211/namespacege211_1_1geometry.html#a4a88b48d7c63284b0dbb6c4bd14908cc
https://tov.github.io/ge211/namespacege211_1_1geometry.html#a89c28aac0aa05aaac616978ae22ad81b
https://tov.github.io/ge211/namespacege211_1_1geometry.html#a89c28aac0aa05aaac616978ae22ad81b
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#a077d27a9b7106eb9dd9cbb81105b4c90
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#a077d27a9b7106eb9dd9cbb81105b4c90
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#a077d27a9b7106eb9dd9cbb81105b4c90
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#a077d27a9b7106eb9dd9cbb81105b4c90
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#a64e887da1c51f771ae674d88233cd1bf
https://tov.github.io/ge211/structge211_1_1geometry_1_1_basic__rectangle.html#a81b45d5896ffcbaf9b315c2c1592c2e7

7

4. Add more test cases to test/ball test.cpp and
test/model test.cpp in order to the test the func-
tions that you wrote.

(We don’t have a way for you to write auto-
mated tests for the UI, but you should test it
interactively.)

As usual, self evaluation will spot-check your test cov-
erage by asking for just a few particular test cases.
You certainly want to test each significant event, such
as the ball hitting the paddle or the ball falling off the
bottom of the screen. You can’t anticipate what other
cases we may ask about, so you should try to cover
everything.

Your grade will be based on:

• the correctness of your implementations with
respect to the specifications,

• the presence of sufficient test cases to ensure
your model code’s correctness, and

• adherance to the EECS 211 Style Manual.

8 Submission

Homework submission and grading will use the GSC
grading server, so you should upload your files on the
GSC web site. You must include any files that you
create or change. For this homework, that will in-
clude src/ball.cpp, src/model.cpp, src/ui.cpp, test/ball -
test.cpp, and test/model test.cpp. (You should not
need to submit a modified CMakeLists.txt and you
must not modify any of the .h files besides src/ui.h.

If you work with a partner then you must register
either on the GSC website or using the gsc partner
command before submitting your work. Once a part-
ner request is accepted, you and your partner’s sub-
missions are cleared and joined together. When one
partner uploads files or performs self evaluation, the
results will be visible to both.

http://users.eecs.northwestern.edu/~jesse/course/eecs211/style.html
https://eecs211.cs.northwestern.edu/gsc
https://eecs211.cs.northwestern.edu/gsc

	Purpose
	Getting it
	Game description
	Physics
	Geometry

	Design orientation
	The model
	The UI

	Implementation hints
	The ball
	– above_block()
	– Ball::top_left()
	– Ball::hits_bottom()
	– Ball::hits_top()
	– Ball::hits_side()
	– Ball::next()
	– Ball::hits_block()
	– Ball::destroy_brick()
	– operator==(Ball const&, Ball const&)

	The model
	– Model::Model(Geometry const&)
	– Model::paddle_to()
	– Model::update()

	The UI
	– Ui::draw()
	– Ui::on_key()
	– Ui::on_frame()
	– Ui::on_mouse_up()
	– Ui::on_mouse_move()

	Reference
	The GE211 geometry types
	– ge211::Position
	– ge211::Dimensions
	– ge211::Rectangle

	Deliverables and evaluation
	Submission

