
Final Project

EECS 211

Winter 2019

Proposal due: March 1, 2019 at 11:59 PM (on GSC)
Code due: March 16, 2019 at 11:59 PM (on GSC)
Eval guide due: March 17, 2019 at 11:59 PM (by email)

Partners: Yes; register on GSC before submission

Contents

1 Purpose 1

2 Getting it 1

3 Project requirements 1

4 Proposal format 2
4.1 Synopsis 2
4.2 Functional requirements 2
4.3 Open questions 2
4.4 Model sketch 2
4.5 Example model tests 2

5 Proposal deliverables, evaluation, and
submission 2

6 Code submission and evaluation 3
6.1 Evaluation and evaluation guide . . . 3

A Example proposal: Brick Out 4
A.1 PROPOSAL.md 4
A.2 src/model.h 4
A.3 test/model test.cpp 5

1 Purpose

The goal of this assignment is to let you apply the
programming skills you’ve acquired in service of your
own creativity.

2 Getting it

While there is no real starter code for the final
project, we’ve prepared a project ZIP file contain-
ing skeletons for the three files you need to submit—
PROPOSAL.md, src/model.h, and test/model test.cpp—
as well as all the dependencies and CMake configura-
tion you need to get started. Download the project
ZIP file to your computer1, unzip it, and open the
resulting directory in CLion2.

3 Project requirements

For the final project, you must implement a game (or
other interactive, graphical program) using C++ and
GE211. There are three phases to the project: pro-
posal, negotiation, and delivery. In the proposal phase,
you write a description of your game—in the format
described below—and submit it for TA approval. In
the negotiation phase, the TA may approve your de-
sign or request changes, potentially more than once.
Once your proposal is accepted, you begin the delivery
phase, wherein you actually implement your game.

The game is expected to be of moderate complex-
ity, perhaps twice as complex in terms of requirements
as Homework 5’s Brick Out or Homework 6’s Reversi.
We will be more precise about assessing this aspect of
your proposal below.

1To complete this homework on your own computer, you need a C++14 toolchain and the SDL2 libraries as in Lab 4. If you need to
work on a lab computer instead, see this Piazza post.

2Be careful that you open the hwfp directory and not some sub- or superdirectory thereof. If you do, CLion will create a bogus
CMakeLists.txt that won’t be able to find SDL2.

1

http://users.eecs.northwestern.edu/~jesse/course/eecs211/hw/hwfp.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/hw/hwfp.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/hw/hw04.pdf
https://piazza.com/class/jpk1il7enus4qr?cid=455

2

4 Proposal format

Your proposal must have the following five sections.
The first three sections must be written in the file
PROPOSAL.md3, and the last two have files of their
own.

4.1 Synopsis

The synopsis is a brief description of the game. You
may divide it into subsections, such as “Elements,”
“Goal,” and “Game play,” as I do in the example below,
but you don’t need to. Your purpose with this section
it to communicate, concisely, what the game is all
about.

(If you need a length guideline, go for 100–200
words.)

4.2 Functional requirements

This is a list of 12–16 specific, identifiable things that
your program will do. These features must be observ-
able to a player, since the TAs will play your game and
use these requirements as a checklist for grading. (It’s
okay if some requirements are difficult for a player to
reach, but you will have to justify those by reference
to your code.)

It may be a bit tricky to figure out the best granu-
larity for describing functional requirements. It would
not be good, for example, to have two separate re-
quirements: “Pressing the left arrow key moves the
player to the left,” and “Pressing the right arrow key
moves the player to right right.” Instead, that should
be a single requirement, perhaps: “The player is con-
trolled by the arrow keys.” This is a matter of taste
and judgment, so see the example below for guidance,
and then consult with the course staff or ask on Piazza
about how to specify your particulars.

4.3 Open questions

What don’t you know yet about how your game will
work? List your open questions in this section. Surely
you have some. Maybe the TA will have some sugges-
tions to help you answer them.

4.4 Model sketch

We want to see a first draft of how you think you
might design your model—this is the model sketch in
src/model.h. This should include your best guesses for
whatever

• classes and structs,

• private data members,

• public operations, and

• private helpers

you expect to need.
Provide a succinct “purpose statement” comment

on each of the above explaining what it’s for.

4.5 Example model tests

Finally, we want to see at least five interesting test
cases in test/model test.cpp. This both shows that you
are thinking about how you will eventually test your
model, and helps us understand what you expect your
model classes and operations to do.

5 Proposal deliverables, evaluation,
and submission

For the proposal, you must write the five specified
sections:

1. synopsis (in PROPOSAL.md),

2. functional requirements (at least 12, in PRO-
POSAL.md),

3. open questions (in PROPOSAL.md),

4. model sketch (in src/model.h), and

5. example model tests (at least 5, in test/model -
test.cpp).

Your grade will be based on:

• the comprehensibility of your synopsis,

• the completeness and preciseness of your func-
tional requirements,

• the relevance of your open questions,

• the adequacy of your model sketch,

• how well your tests demonstrate the meanings
of your model operations, and

• and how seriously you seem to have considered
the proposal.

3 The .md file extension indicates Markdown, which is a text-based format for lightly-styled text. If you edit it in CLion and install the
Markdown plugin then it will give you syntax highlighting and a preview of the rendered styling.

https://en.wikipedia.org/wiki/Markdown

3

Homework submission and grading will use the
GSC grading server, so you should upload your files
on the GSC web site. For the proposal, the files you
submit will include PROPOSAL.md, src/model.h, and
test/model test.cpp. Submit the proposal as hw7 on
GSC.

Partnerships registered for the proposal will con-
tinue for the final code, so choose your partner wisely.
You must register either on the GSC website or using
the gsc partner command before submitting your
work.

6 Code submission and evaluation

Your final code should be submitted as hw8 on GSC.
You need to upload all files required to run and build
your game and tests. This includes your CMake-
Lists.txt and all files in your src/, test/, and Resources/
directories.4 Do not submit the .eecs211/ directory,
the .idea/ directory, nor any build directory (such as
cmake-build-debug/).

There is no need to submit README.md on GSC,
as evaluation plans have changed. Please see below.

Note that you have a quota of 20 MB for your en-
tire submission, but you are unlikely to reach this limit
until you have a significant amount of audio among
your run-time resources.

6.1 Evaluation and evaluation guide

Your proposal is worth 25% of your project grade, and
the final code delivery is worth the other 75%. That
75% is further broken down into three components:

style 10%
model tests 20%
functional requirements 70%

Your project TA will assess style on their own, but
for the latter two points, they will need your help in
the form of the “evaluation guide” described below.
You don’t need to submit your evaluation guide on
GSC—rather, you have 24 hours after your project
is due to email your evaluation guide to the same
TA who evaluated your project proposal. This is so
that you 1) don’t have to worry about producing the
document while also trying to finish your code, and
2) can easily provide GSC line number references for
the final submission.

The evaluation guide must contain the following
two components.

Favorite model tests (20%). As in the proposal, we
want to see five significant model tests. Choose tests
that you think best characterize your design and
demonstrate how your model works. For each, pro-
vide very a short description of what the test is about,
along with a reference to a line number (using the
numbering shown on GSC).

Functional requirement hints (70%). For the core of
the evaluation, your project TA will attempt to verify
that your program meets the functional requirements
from your proposal. (This is why you need your TA’s
approval for any changes to those requirements.) For
each requirement, there are three ways that they may
attempt this verification:

1. By playing the game and observing the require-
ment, for full credit.

2. By reading a model test that demonstrates that
the game meets the requirement, for full credit.
(You are free to reuse a favorite test here.)

3. By looking at the code that implements the re-
quirement, for 80% credit.

You must provide a numbered list matching your list
of proposed and accepted functional requirements,
and for each requirement, specify how the TA should
attempt to check it:

1. For validation by playing, you need to provide
instructions for how to play the game to a state
where the requirement can be observed. If your
game has multiple levels, difficulties, or modes,
you may find it useful for your main() function
to take an optional command-line argument to
allow the grader to jump to a particular level.
Also, if you believe there’s a chance that your TA
will have trouble validating a particular require-
ment by playing, you may also provide a test or
code reference (options 2 and 3) as backup.

2. For validation by test, you need to provide GSC
line numbers for the relevant test or tests, along
with sufficient explanation for your TA to under-
stand why the test you tagged is evidence that
the functional requirement in question is met.

3. For validation by implementation—the least pre-
ferred method—you need to provide GSC line
numbers for the relevant implementation code,
along with sufficient explanation for your TA to

4When reconstructing your project for grading, GSC puts source files whose names begin or end with “test” in the test/ directory,
other source files in the src/ directory, and files with types it doesn’t recognize in the Resources/ directory. So make sure you name any
files that need to be in the test/ directory appropriately.

https://eecs211.cs.northwestern.edu/gsc

4

understand why the code you tagged is evidence
that the functional requirement in question is
met.

A Example proposal: Brick Out

In this section, we give an example proposal for the
Brick Out game from Homework 5.

A.1 PROPOSAL.md

The synopsis, functional requirements, and open ques-
tions must be in PROPOSAL.md:

Proposal: Brick Out

Synopsis

Elements

My game will have three elements:

- a stationary array of rectangular bricks
at the top of the screen,

- a rectangular paddle at the bottom that
moves horizontally and is controlled by the
user, and

- a circular ball that bounces in between,
destroying any bricks it collides with.

Goal

The player’s goal is to destroy the bricks
without allowing the ball to reach the bottom
of the screen.

Game play

The ball starts out stuck to the top of the
paddle, and the player starts the game by
launching it with a mouse click or key press.
Then the ball bounces between the paddle, the
bricks (destroying any it hits), and the top
and sides of the screen. If it reaches the
bottom of the screen then it dies and returns
to its initial stuck-to-the-paddle state, from
which it can be launched again.

Functional requirements

1. The bricks are placed in a grid at the top

of the screen.

2. The paddle’s x coordinate follows the
mouse, while its y coordinate is fixed.

3. In the initial (dead) state, the ball
sticks to the paddle.

4. The player can release the ball,
transitioning it from dead to live state, by
pressing the space bar or clicking the mouse.

5. When the ball is released, it travels
upward from the paddle with some initial
velocity.

6. If the ball strikes the top or side of the
screen, it bounces off.

7. If the ball strikes a brick, it destroys
the brick and bounces off *weirdly* (TBD).

8. If the ball strikes the paddle, it bounces
off with a small, random *boost* to its
velocity (TBD).

9. If the ball reaches the bottom of the
screen, it transitions back to the dead state
(and nothing else changes).

Open questions

- How should bouncing off of bricks be weird?

- How can the random boost be generated? How
can it be tested?

- What dimensions and velocities make the
game work best?

A.2 src/model.h

The model sketch must be in src/model.h:

//
// Model constants:
//

int const ball_radius;
ge211:: Dimensions const paddle_dims;
ge211:: Dimensions const brick_dims;

//
// Model classes:
//

A.3 test/model test.cpp 5

// The position of one brick , and
// whether it's still there.
struct Brick
{

// The top -left corner
ge211:: Position top_left;

// Whether the brick still exists
bool live;

}

// The whole state of the game.
class Model
{

//
// PRIVATE DATA MEMBERS
//

// The top left of the paddle
ge211:: Position paddle_;

// The center of the ball
ge211:: Position ball_;

// The velocity of the ball
// ({0, 0} means dead).
ge211:: Dimensions vel_;

// The bricks
std::vector <Brick > bricks_;

public:
//
// PUBLIC FUNCTIONS
//

// Returns the ball's position.
ge211:: Position get_ball () const;

// Returns the paddle 's position.
ge211:: Position get_paddle () const;

// Returns the states of all the
// bricks.
std::vector <Brick > const&
get_bricks () const;

// Updates the model state for
// one time step.
void update ();

// Moves the x coordinate of the
// paddle to `x`.

void move_paddle(int x);

// Launches the ball if it's dead.
void launch_ball ();

private:
//
// POSSIBLE HELPER FUNCTIONS
//

// Determines whether the ball
// hits the given object.
bool ball_hits_top_ () const;
bool ball_hits_left_ () const;
bool ball_hits_right_ () const;
bool ball_hits_bottom_ () const;
bool ball_hits_paddle_ () const;

// Returns a pointer to a hit
// brick , or nullptr if none.
Brick* find_hit_brick_ () const;

// Removes the indicated brick.
void destroy_hit_brick_(Brick *);

// Reflects the ball from the given
// (kind of) object.
void reflect_ball_top_ ();
void reflect_ball_sides_ ();
void reflect_ball_paddle_ ();
void reflect_ball_brick_ ();

// Returns the ball to dead state.
void reset_ball_ ();

// Test access
friend class Test_access;

};

A.3 test/model test.cpp

The example model tests must be in test/model -
test.cpp:

A.3 test/model test.cpp 6

TEST_CASE("initial␣bricks")
{

Model m;

std::vector <Brick > expected {
{{100, 100}, true},
{{250, 100}, true},
{{400, 100}, true},
{{550, 100}, true},
{{100, 175}, true},
{{250, 175}, true},
{{400, 175}, true},
{{550, 175}, true},
{{100, 250}, true},
{{250, 250}, true},
{{400, 250}, true},
{{550, 250}, true}

};

CHECK(m.get_bricks () ==
expected);

}

struct Test_access
{ ... };

TEST_CASE("left␣side␣collision")
{

Model m;
Test_access t(m);

t.bricks (). clear ();
t.ball() = { 13, 200 };
t.velocity () = { -10, 3 };

m.update ();

CHECK(m.velocity () ==
Dimensions {10, 3});

CHECK(m.ball() ==
Position {23, 203});

}

///
/// NEED AT LEAST THREE MORE TEST
/// CASES FOR PROPOSAL
///

	Purpose
	Getting it
	Project requirements
	Proposal format
	Synopsis
	Functional requirements
	Open questions
	Model sketch
	Example model tests

	Proposal deliverables, evaluation, and submission
	Code submission and evaluation
	Evaluation and evaluation guide

	Example proposal: Brick Out
	PROPOSAL.md
	src/model.h
	test/model_test.cpp

