
EECS 211 Lab 1
Navigating the Unix Shell

Winter 2019

Today we are going over the basics of how to log into a remote
computer, use shell commands to create and edit files, and compile
and run C code. The Northwestern EECS servers run a Unix shell
called tcsh. Using tcsh is very similar to using bash,

the default shell that Macs use for
Terminal.app.

The shell works as a textual conversation. It presents a prompt,
like [wsc147@batman eecs211]$. (The default EECS prompt shows
the username, the hostname, and the current working directory.) You
type a command and press enter. The shell executes the command
and then prints another prompt, waiting for further commands. For
example, to list the files in the current directory, you will run the ls
command by typing it at the prompt:

$ ls Don’t type the $. That stands for your
shell prompt.

Before you can do that, though, we have to get you logged in.

Logging in

For the majority of you who are unfamiliar with the Unix shell, it
probably seems like a scary foreign concept reserved for computer
hackers on TV shows and movies. However, in reality, with a little
bit of time and a few basic commands, you will realize that the Unix
shell is not something to be scared of, and in fact a very useful tool to
embrace as you continue your computer science education. Don’t get
frustrated if it seems hard at first! Every great computer scientist was
at one point also unfamiliar with the shell, just like you, but with a
little bit of exposure, it will start to make sense.

SSH (secure shell) is a protocol that allows you to login remotely
onto an external system. We will be using it in order to create a
connection onto a Northwestern remote server, where we will be
learning our first Unix skills. For the first step of establishing the
connection, it will be different for Windows and Mac/Linux, but for
the rest it should not matter which OS you are on, since you’ll be
using the remote Unix machine.

Windows

Download the SSH client PuTTY; be sure to get the MSI installer, https://the.earth.li/~sgtatham/putty/0.70/w32/
putty-0.70-installer.msinot just putty.exe, because you need pscp.exe as well, and you

need it installed in the right place. The link on the right will take

https://the.earth.li/~sgtatham/putty/0.70/w32/putty-0.70-installer.msi
https://the.earth.li/~sgtatham/putty/0.70/w32/putty-0.70-installer.msi

eecs 211 lab 1 2

you directly to the Windows installer. After you install PuTTY, open
it up. You’ll need to enter a hostname to login to. The link on the
right will take you to a list of student lab hostnames (such as tlab- http://www.mccormick.northwestern.

edu/eecs/documents/current-students/
student-lab-hostnames.pdf

03.eecs.northwestern.edu or batman.eecs.northwestern.edu). Ensure SSH
is selected, then press Open. You should get some sort of message
asking whether or not you trust the host. Press yes. From here, login
as your EECS username (probably the same as NetID), and your
EECS password (not necessarily your NetID password). You should
now be logged into one of the Northwestern EECS boxes!

(Note that you can configure PuTTY so that you don’t have to do
all of this every time.)

Mac/Linux

For those of you on Mac or Linux, everything you need is already
installed. Open up your terminal and at the prompt type a single Mac users: search for “terminal” in

Spotlightcommand of the form

$ ssh [eecs-id]@[eecs-host].eecs.northwestern.edu Don’t type the $.

where [eecs-id] is your EECS username (probably your NetID) and
[eecs-host] is replaced by one of the EECS hostnames from the list
of student lab hostnames (such as tlab-03.eecs.northwestern.edu or http://www.mccormick.northwestern.

edu/eecs/documents/current-students/
student-lab-hostnames.pdf

batman.eecs.northwestern.edu).
You should get a message saying that the authenticity of the host

can’t be established, and you should be asked if you want to continue
connecting. Type “yes” as prompted and press Enter. Now type in
your EECS account password (not necessarily your netID password),
press Enter again, and you should be logged in remotely!

Basic shell navigation

There are a few basic commands we will be using frequently through-
out this exercise in our shell: cd, ls, and pwd, and man.

cd stands for “change directory,” and is used to change the current
directory we are looking at in our shell (our working directory). You
can think of a directory as a folder from your regular interactions
with your computer. For example the command $ cd Documents will As usual, don’t type the $.

look for a directory inside our current directory called Documents,
and if it exists, our working directory will become that Documents

directory. If you ever want to go back to your home directory, the
command $ cd with no argument will switch your working directory
back to your home directory. The command $ cd .. will switch your
working directory up one level from where you currently are.

http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf

eecs 211 lab 1 3

pwd stands for “print working directory,” and is used to print out
the current working directory of your shell. For example, if you have
been navigating around for a while and you are lost you can type in
the command $ pwd and you will see your directory printed out into
the shell.

ls is short for the word “list,” and is used to list the contents and
subdirectories within your current working directory. You can type
the command $ ls into your shell, and you will see all files and
directories within your current working directory.

Play around with these three commands for a few minutes in your
shell, and see what directories and files already exist on your EECS
box!

man is short for “manual,” and is used to access the system man-
uals. For example, you can read the manual pages for pwd and ls by
running the commands $ man pwd and $ man ls. To learn about man, Hit q to quit.

you can of course run $ man man.
Once you are done playing around, type $ cd in to navigate back

to your home directory. We will be making a new directory for this
lab using the mkdir command.

Creating new content

mkdir stands for make directory, and is used to create a new direc-
tory within our current working directory. For example, $ mkdir

fun-project will create a new directory inside our current one called
fun-project that we can cd into if we so desire. We can create hierar-
chies of directories to keep our files well organized.

Create a new directory inside your home directory called lab1-dir.
Change your current working directory to lab1-dir, and we will now
practice editing and compiling some C source files!

The $ emacs command in the shell will open up the Emacs text Text editor preferences can be a fairly
contentious issue among software
engineers, and if you already have
experience with one of Vim or Emacs,
feel free to use whichever you already
have experience with instead of Emacs.
However, for the purpose of this class,
we will be teaching using Emacs. Emacs
can also seem scary at first, but after
you learn a few simple commands, it
will quickly start making sense.

editor. (On Mac/Linux, you will probably want to use $ emacs -nw

to avoid starting the X Window System..) Pass in a file that you want
to edit (even if it hasn’t been created yet), and you can start editing
that file! For example type $ emacs -nw my_code.cpp and you can
start editing a file called my_code.cpp within your current working
directory.

Inside your lab1-dir directory create and open a file using Emacs
called animals.txt. Note that the .c file extension is what we will be
using to indicate C files. You will see a text editor pop up that does
not look dissimilar to a Notepad.exe or TextEdit.app editor from your
Windows or Mac. However, you will notice that clicking a location
using your cursor will not move your cursor to where you click :(

Inside this text editor, type in a list of your 3 favorite animals.

eecs 211 lab 1 4

Once you have typed in your list, you are going to want to save your
file so you can use it later. On Emacs, saving is slightly different than
other programs. Instead of using Command- or Ctrl-s, you are going
to use Ctrl-x followed by Ctrl-s. (In Emacs, this is spelled “C-x C-s.”) If you are curious about more Emacs

commands, there is a nice basic list
here: http://www.cs.cornell.edu/courses/
cs312/2003sp/handouts/emacs.htm. You
can also run an Emacs tutorial inside
Emacs. Press C-h t – that is, Ctrl-h
followed by t (no Ctrl).

This will save your file to your current working directory. Now, we
want to close our Emacs window and get back to our Unix shell. In
order to close our Emacs window, we will type C-x C-c (that is, Ctrl-x

followed by Ctrl-c).
We can ensure that our file was properly created by using the

cat command in the shell. cat is short for “catenate,” and prints out
contents of a given file. $ cat [filename] will print the contents of the
file to the shell. If you run $ cat animals.txt you should see the file
you just created on your shell.

Creating our build system

Please navigate back to your home directory (using just the $ cd

command). Once your current working directory is your home
directory, we are going to set up a configuration file so that you will
be using the correct version of the toolchain (the C compiler and
associated tools), and that it will be correct each time you remotely
login to your EECS account. Don’t worry about understanding what
is going on right here, it is something that just needs to be configured
for this quarter. To do this we will be creating a file called .tcshrc

in your home directory (note the period, and ensure this name is
spelled exactly correct). Once this is open, type the following line Remember to create this file and edit

it using Emacs we will type in $ emacs

.tcshrc.
exactly into your file, save, and exit it:

source /home/jesse/pub/etc/csh_profile

Now, for this time only, type in $ exec tcsh into the shell to
reload.

Each time you open up your remote connection (including right
now) and plan on compiling code (probably every time for first few
weeks of the class), type the $ dev command into your shell. This
will ensure that everyone is on the same (and correct) developer
toolset.

Using our build system

As briefly mentioned in class, make is our build system we will be
using for the first few weeks of the course at least. We will usually
be giving some sort of starting structure for the projects you will
work on, and right now is no exception. This structure is found in a
.tgz file that you need to downloaded onto your remote shell. Linux The .tgz file extension is used

for “gzipped tarball,” which is
like the Linux equivalent of a
.ZIP file.

http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/emacs.htm
http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/emacs.htm
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Tar_(computing)

eecs 211 lab 1 5

provides a command called wget which will help download things
from the internet for us.

wget stands for “web get,” and downloads things from the web
using the following command format:

$ wget [url]

For this example, we will be getting our file from this url: http:

//users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab01.tgz.
However, the shell setup we did earlier defined an environment vari-
able to contain the URL of the EECS 211 website. Thus, our command
will be:

$ wget $URL211/lab/eecs211-lab01.tgz

Once we have our .tgz file, we will need to turn it from a com-
pressed file into a new directory, using the tar command. Use the
following command to extract archive file into a directory called
eecs211-lab01:

$ tar xvf eecs211-lab01.tgz

Now, once we have our new directory with its files, change your
directory to eecs211-lab01 using the cd command. Now list its con-
tents using ls, and notice that there is a Makefile file, and a src/ direc-
tory. The Makefile file is a make configuration file which you won’t
have to worry about too much right now; the src/ directory contains
the file hello.c, which we have provided you.

You can build your program using the command make.
The basic purpose of make is to build your project into an exe-

cutable file. In your build directory, each time you update your code,
you can run

$ make [target-name]

to create your executable called [target-name]. In this case, run $ make

build/hello to build a program called hello, which will be put in a
directory called build/ (which make will create for you as necessary).
You can run the executable as follows:

$ build/hello

This should spit out a nice greeting.

Updating our code

So, we gave you a basic function and you were able to run it, but how
do you change the code?

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab01.tgz
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab01.tgz

eecs 211 lab 1 6

Open up the src/hello.c file using Emacs, and edit it so it now says
“Aloha 211 student!” instead of “Hello 211 student!.” Make sure to
save and exit Emacs. Remember C-x C-s to save and C-x C-c to

exit.Then try running $ build/hello again. Did anything change?
The reason why you still see “Hello 211 student!” on your screen

is because while you changed your C++ code, your computer doesn’t
understand the C++ code, but only the machine code you create by
using make. So now, run $ make build/hello once again, and try
$ build/hello. Notice how you now have the correct output! Each
time we want to change our code, we are going to need to remember
to rebuild our executable. Don’t worry if you have error messages
your first few times trying to write new code, this is completely
normal. Even the best developers in the world usually need a few
tries before they can properly build their files, so just take a deep
breath, and try and figure out what went wrong.

Conclusion

Knowing how to use the shell is an extremely important tool in com-
puter science. Don’t worry if it is still hard for you to use, like much
of life, it is one of those things you’ll just need to practice with until
it seems much more familiar! On your own time, it would be a good
idea to continue learning more about the shell and playing around
with some more commands. Of course, come to office hours or post A good resource for some ba-

sic commands is here: http://www.
computerworld.com/article/2598082/linux/
linux-linux-command-line-cheat-sheet.html.

on Piazza with any questions or if you want any more challenges!

Useful links

Lab 1 Project http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/

eecs211-lab01.tgz

EECS login server hostnames http://www.mccormick.northwestern.edu/eecs/

documents/current-students/student-lab-hostnames.pdf

Simple command line cheat sheet http://www.computerworld.com/article/

2598082/linux/linux-linux-command-line-cheat-sheet.html

PuTTY MSI installer https://the.earth.li/~sgtatham/putty/0.70/w32/putty-0.

70-installer.msi

Nice Emacs guide http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/

emacs.htm

Nice Vim guide http://www.openvim.com/

http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab01.tgz
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab01.tgz
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
https://the.earth.li/~sgtatham/putty/0.70/w32/putty-0.70-installer.msi
https://the.earth.li/~sgtatham/putty/0.70/w32/putty-0.70-installer.msi
http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/emacs.htm
http://www.cs.cornell.edu/courses/cs312/2003sp/handouts/emacs.htm
http://www.openvim.com/

	Logging in
	Basic shell navigation
	Creating new content
	Creating our build system
	Using our build system
	Updating our code
	Conclusion
	Useful links

