
EECS 211 Lab 3
Strings

Winter 2019

Today we are going to practice manipulating "strings".

Getting Started

Let’s get started by logging into a remote Northwestern server. We
did this last week, but if you need help remembering the steps, they
are included below. The list of remote Northwestern servers

can be found here: http://www.mccormick.
northwestern.edu/eecs/documents/
current-students/student-lab-hostnames.pdfWindows

Open PuTTY. You’ll need to enter a hostname to login to. The link
on the right will take you to a list of student lab hostnames (such as
tlab-03.eecs.northwestern.edu or batman.eecs.northwestern.edu). Ensure
SSH is selected, then press Open. When prompted, enter your EECS
username and password (not necessarily the same as your NetID
password) and you’re good to go.

Mac/Linux

Open up your terminal. At the prompt, use the ssh command of the
form

$ ssh [eecs-id]@[eecs-host].eecs.northwestern.edu

where [eecs-id] is your EECS username (probably your NetID) and
[eecs-host] is replaced by one of the EECS hostnames from the list
of student lab hostnames (such as tlab-03.eecs.northwestern.edu or
batman.eecs.northwestern.edu). When prompted, type in your EECS
username and password (not necessarily your NetID password),
press Enter again, and you should be logged in remotely!

Getting the code

Recall our basic Unix commands: cd, ls, mkdir, and pwd. What do they
stand for and what do they do? Ask your TA if you don’t remember. Or ask Google.

Use the following curl-and-tar pipeline to download and extract the
code into your directory of choice. We suggest that you keep your
EECS 211 files in an eecs211/ subdirectory of your home directory,
but it’s up to you.

$ curl $URL211/lab/eecs211-lab03.tgz | tar zxv

http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf

eecs 211 lab 3 2

You should now have a directory called eecs211-lab03.

Setting up the build system

Type the $ dev command into the shell to ensure that you are using
the correct developer toolset. You must do this every time you open a
remote connection and plan on compiling C code.

Writing the code

Navigate to your eecs211-lab03 directory, and open up src/lab2.c in
Emacs using

$ emacs -nw src/lab3.c

Notice that there is already some skeletons of functions and some
code in main() here.

const char *str_chr(const char *s, char c)

First, find the function called str_chr. We are going to use this func- Notice that str_chr is going to return a
const char *.tion to determine if the character c exists in the string s, and if so,

where. If you remember from class, we have a few ways of iterating,
most notably while which is what you will use for this function.

While loops

As we learned in class, a while loop has the following syntax: Note that in while loops we usually will
use a boolean expression for <expr>
(an expression which returns true or
false.)

while (<expr>) {

// Looping through code here

// Until <expr> is false

}

Use a while loop inside our str_chr in order to see if c is every
equal to any one of the charcters in s. Make sure to use a return Remember that we have the ++ operator

to help us.statement to return the char * if we find it (or a NULL if nothing is
found).

Once you think that your function works as intended, save and
and try compiling and running it. If you remember from last week, C-x C-s to save

we used the make command in order to turn our C file into machine
code. Run:

$ make build/lab3
Remember, make works as follows:
$ make [target]. Target is usually the
name of the executable file that will be
built by the make command.

If everything works, if we list the files in build, we should now see a
file called lab3. Enter the command

eecs 211 lab 3 3

$ build/lab3

See if your value looks right! If it doesn’t, don’t worry, Rome wasn’t
built in a day. Try and see what went wrong. Play around with the Error messages may look scary, but in

reality, they’re there to help you! Not
intimidate you!

value of s and c to see how it affects the result.

bool is_prefix_of(const char *haystack, const char *needle)

Once we have everything working with our str_chr, let’s move on to a
similar function called is_prefix_of . This function is similar to str_chr Notice that is_prefix_of is going to

return a bool.in that it loops through a string to find something, but the difference
here is that we are looking for a substring - not just a character. Since
both of the inputs are “strings” (char *), you will need to check that
not only one character matches in the substring (needle), but that
every character matches. Return true if the needle is fully contained
by the haystack.

Once you are done, make and run your file. See if your function
properly identifies prefixes. If not, no worries, go back and try again!

const char *str_str(const char* haystack, const char *needle)

Once the function is_prefix_of is working, write a new function str_-
str that uses is_prefix_of to determine if a word exists anywhere in
another word. To check if the search word (needle) is in the haystack,
first check to see if it is a prefix of haystack. If needle is not the prefix
to haystack, try to see if needle is the prefix of everything but the first
letter of haystack. This loop will effectively check for the subword
needle in every possible position inside haystack. Make sure to return
haystack if you find the subword and NULL if you don’t.

Make and run lab3, and see if str_str works the way that you
intended. Hopefully everything works! If not, as usual, go back and
try and find what went wrong and update your code.

char* interpolate(const char *format, const char *args[], char *buffer)

Now using what we have learned about how to manipulate strings
we are going to write our own version of sprintf (3) (a relative of
printf (3)) called interpolate. Interpolate will return a char *, and takes
as input a const char *, an array of const char *, and a final char

*. The first input (const char *) format will contain our format string.
This string is what our program will work through to try and come
up with an output string. The second input is args and this holds the
elements that we will be placing into the new string. The final input
is simply our buffer, where we will build everything to return. The
rules for our format string are going to be that you will fill in text any

eecs 211 lab 3 4

time you see {}. So, a string that looks like "Hello {}!" with and
argument of "Jason" would return "Hello Jason". As well, we want
to allow our format strings to have modifiers. If you just see {}, then
return exactly what you got as input but if you see {^} then make the
input uppercase and if you see {v} then make the input lowercase.
This is a complex problem so it might be useful to break it down into
the component parts: identifying format string and modifiers, filling
the string in (modified).

Once you have this done, make and run lab3, and see if this fea-
ture is working!

	Getting Started
	Getting the code
	Writing the code

