
EECS 211 Lab 4
C++ Toolchain Setup

Winter 2019

Today we begin programming in C++ and the GE211 game engine
in a minimal example game. The game is quite simple: You control
two circles on the screen—one with the mouse and one with the
keyboard—and when the two circles overlap, one changes color. As
you will see, however, it comes with a bug.

Before we can get started we need to install our C++ and GE211

development environment. You’ll need a C++ compiler, the CLion
IDE, and the SDL2 graphics libraries. Read on. . .

Software registration & downloads

First, register for a student JetBrains account on their website. You https://www.jetbrains.com/shop/eform/
studentswill receive an email that you need later in this process.

For all platforms, you will need to download the CLion installer. https://www.jetbrains.com/clion/download

Additional downloads vary by platform:

Windows You will need to download our custom installer for MinGW- https://users.eecs.northwestern.edu/~jesse/
course/eecs211/files/MinGW-SDL2.exew64 with SDL2. This comes with C and C++ compilers as well as

the SDL2 graphics library.

Mac You will need to download our custom disk image containing https://users.eecs.northwestern.edu/~jesse/
course/eecs211/files/SDL2-all.dmgthe SDL2 graphics library.

Linux Make sure you have a working C++14 toolchain installed. You
should also install the development packages for SDL2, SDL2_-

image, SDL2_ttf, and SDL2_mixer.

Toolchain setup

Windows

On Windows, you need to install MinGW-w64 (the C++ compiler):

1. Run the MinGW-SDL2.exe installer and follow the prompts to
install MinGW-w64. You should usually install it to C:\MinGW, but
wherever you install it, take note, as you will have to configure
CLion to find it later.

2. Follow the instructions in your JetBrains registration email to
activate your account.

https://www.jetbrains.com/shop/eform/students
https://www.jetbrains.com/shop/eform/students
https://www.jetbrains.com/shop/eform/students
https://www.jetbrains.com/clion/download
https://www.jetbrains.com/clion/download
https://users.eecs.northwestern.edu/~jesse/course/eecs211/files/MinGW-SDL2.exe
https://users.eecs.northwestern.edu/~jesse/course/eecs211/files/MinGW-SDL2.exe
https://users.eecs.northwestern.edu/~jesse/course/eecs211/files/MinGW-SDL2.exe
https://users.eecs.northwestern.edu/~jesse/course/eecs211/files/SDL2-all.dmg
https://users.eecs.northwestern.edu/~jesse/course/eecs211/files/SDL2-all.dmg
https://users.eecs.northwestern.edu/~jesse/course/eecs211/files/SDL2-all.dmg


eecs 211 lab 4 2

3. Run the CLion installer. Most defaults should be fine, but you
should check all of the “Create associations” boxes when they
appear.

Set the toolchain in CLion to the location where you installed
MinGW. The folder you select should contain subfolders with
names like bin and lib. Ignore any warnings about version num-
bers.

Mac

Mac OS automatically installs its toolchain when you attempt to
use it from the command line for the first time; you will still have to
install the SDL2 libraries yourself.

1. Thus, to install developer tools, run the Terminal.app program
(from /Applications/Utilities) to get a command prompt. At the
prompt, type

$ clang

and press return. If it prints clang: error: no input files then
you have it installed already. Otherwise, a dialog box will pop up
and offer to install the command-line developer tools for you. Say
yes.

(Alternatively, you can install the latest version of Command Line
Tools for OS X manually from Apple, or install XCode from the https://developer.apple.com/downloads/

App Store.)

2. Once you have the developer tools installed, you need to install
the SDL2 libraries. Open the SDL2-all.dmg disk image and drag the
four frameworks into the linked /Library/Frameworks directory. You
may have to authenticate as an administrator.

3. Follow the instructions in your JetBrains registration email to
activate your account.

4. Run the CLion installer—defaults should be fine.

The game

Getting the starter code

For this lab, the starter code is provided as a ZIP file here: http://

users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.

zip. Extract the archive file into a directory in the location of your
choosing. Once you have your new directory containing the starter
files, you can open it in CLion.

https://developer.apple.com/downloads/
https://developer.apple.com/downloads/
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.zip


eecs 211 lab 4 3

Be careful, as CLion will only work correctly if you open the main
project directory with the CMakeLists.txt in it. If you open any other
directory, CLion may create a CMakeLists.txt for you, but it won’t work
properly.

Inverted control

Currently, there is an bug in this code. Run the program and try to
control the circle with your left and right arrow keys, and you will
move in the opposite direction of what you intend. Locate the code
for this—hint: it’s in the model—and fix it.

There are test cases for checking the model’s movement, so when
you are done try running your code against the tests.

Up and down

As you have seen, the circle that is controlled by the keyboard only
moves horizontally right now. Add two member functions to the
Model struct, Model::move_large_circle_up() and Model::move_large_circle_down(),
and connect them to the keyboard by modifying the Game::on_key(Key)

member function in game.cpp.

Click, not hover

Currently, the position of the smaller circle tracks the position of the
mouse. However, what if we want the game to only update the posi-
tion of smaller circle when we click? To detect mouse clicks, you will
have to override the Abstract_game::on_mouse_down(Mouse_button, Position)

function in the Game struct. See the documentation here.

Testing

The current tests include a few examples that should pass for your
code. Add two new test cases for the new functions you added to the
model, and verify that they do what you expect.

There is a test case that checks that the state will sometimes be
Collision_state::touching. Fill in the final test for checking when
the circles aren’t touching.

https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a6d88b5777c0a08fe261bc39c0694dd4f

	Software registration & downloads
	Toolchain setup
	The game

