
EECS 211 Lab 5
Type Racer

Winter 2019

Today we will be looking at another a C++ program using the GE211

game engine in a slightly more advanced example game. The concept
of the game is simple enough: Words appear on screen as letters in
circles, and you to type the letters you see on the keyboard in order.

This game uses the model–view–controller pattern not-yet-
described in class, which allows defining the look, user interaction,
and “business logic” of an interactive program as separate com-
ponents. Provided are the Model class which defines the internal
game state, the View class for rendering game to the screen, and the
Controller class for reacting to user input and tieing it all together.

Getting the starter code

For this lab, the starter code is provided as a ZIP file here: http://

users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab05.

zip. Extract the archive file into a directory in the location of your
choosing. Once you have your new directory containing the starter
files, you can open it in CLion. Be careful, as CLion will only

work correctly if you open the
main project directory with the
CMakeLists.txt in it. If you open
any other directory, CLion may
create a CMakeLists.txt for you,
but it won’t work properly.

General idea

You have been given a fully functioning Type Racer that loads a
dictionary file (which can be found at Resources/dictionary.dat), and
then displays each word from the dictionary—in order—as letters
inside colored circles. The player’s goal is to type the word, and
the controller takes keyboard input to update the player’s progress
through the word. The circles start out yellow, and as the player
progresses through the word, each circle changes to green for a
correctly typed letter, or red for a mistyped or timed-out letter. Upon
finishing a word the game loads the next word, until all words in the
dictionary have been exhausted. Try to identify these components
and trace their logic in the source code provided before continuing.

Randomize the dictionary

In controller.cpp, one of the constructors for the Controller class
calls a helper function load_dictionary() for loading the dictionary
file into a std::vector<std::string>. Since the dictionary file is
alphabetized and the model goes through the word vector in order,

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab05.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab05.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab05.zip

eecs 211 lab 5 2

this means that you see the same words, starting with “a,” every
time.

Your job is to modify the code of the Model and Controller classes
to randomize the order of the words after the words are read in.
You will do this with a Fisher-Yates shuffle, which is a simple and
efficient algorithm for randomly permuting the order of a vector. The
algorithm is: In other words, if the vector

has length n, first you choose
a random element from index
0 to n − 1 to put in position 0.
Then choose a random element
from index 1 to n − 1 to put in
position 1, and so on.

procedure SHUFFLE(v: vector):

for i in 0 to len(v)− 2:

r ← a random integer from between i and len(v)− 1;

swap(v[i], v[r])

We don’t want the model to randomize the words unconditionally,
because that would make testing too difficult. So instead, the shuf-
fling itself should happen in a new member function of the model at
the controller’s request. Here’s one way you can do it:

1. Add a public member function to the Model class whose purpose
is to shuffle the dictionary_ vector. For a source of randomness,
this function should take a reference to a ge211::Random. If rng
is a ge211::Random& then you can generate a random integer
between a and b (inclusive) with the call rng.between(a, b).

2. Add a call to your shuffling function to the body of the Controller::-

Controller(std::string const&) constructor. That way, when the
game reads words from a file their order is randomized, but you
can also avoid the shuffling by providing the vector directly.

Keep score

Another thing that would be nice for this game is to add score keep-
ing of some kind. You could give 2 points for every correct letter
typed, −5 for every incorrect letter typed, −1 points for every letter
timed out, and 10 points for every word completed without errors.
When the game ends, have it stop and display the score instead of
looping on the word “gameover.”

Here’s a plan:

1. Add a private member variable to the model to hold the score, Don’t write a “setter,” because
no one needs to set the score
from outside the model.

and a public member functiom to allow the view to access it.

2. Figure out how to detect the scoring events in the model code, and
update the score for each. Define constants for the event

values. No magic numbers!
3. Add private ge211::Font and ge211::Text_sprite member vari-

ables to the view class. For creating the font, note that "sans.ttf"

https://tov.github.io/ge211/classge211_1_1_random.html
https://tov.github.io/ge211/classge211_1_1_font.html
https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite.html

eecs 211 lab 5 3

is included with GE211. For the text sprite, the initial text should
be the number 0.

4. Modify View::draw to:

(a) reconfigure the text sprite to contain the current score, and

(b) add the score sprite to the sprite set.

In order to reconfigure the text sprite, you will need to create a You might also modify the view
to keep track of the last score
that it saw, so that it only needs
to reconfigure the text sprite
when the score changes.

ge211::Text_sprite::Builder and then add text to it. It looks
something like this:

my_text_sprite_.reconfigure(

ge211::Text_sprite::Builder(my_font_) << my_value)

Testing

It’s hard testing whether your shuffle is producing permutations
uniformly. You could do repeated trials and check that you get a
reasonable distribution, but that’s fairly tricky as soon as n > 2.
Easier, however, is to use std::is_permutation to check that the
result of your shuffle is a permutation of the original. std::is_-
permutation can take two begin–end pairs of iterators to compare,
and std::vector has public member functions begin() and end() for
getting such iterator pairs. Thus, you can check whether two vectors
v and w are permutations of each other with:

CHECK(is_permutation(v.begin(), v.end(),

w.begin(), w.end()));

You should also test that your model detects scoring events and
keeps score properly.

Other ideas

What if the game displayed a count-down timer for each letter’s
timeout? (How can you format seconds with one decimal digit using
C++’s iotreams?) Or instead of the numeric time, what if it showed
a bar whose length shrunk as the time ran out? (Does that require
creating a new Rectangle_sprite to change its size, or can you scale
it by passing a ge211::Transform to the four-argument form of add_-
sprite?)

Can you make the game time the entire word for 2 * current_-

word_.size() seconds instead of 2 seconds per letter as it does now?
(Then you’d really want some kind of display of the time remaining.)

https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite.html#afe7c024ae674fec2431b9d3eb9ad4173
https://tov.github.io/ge211/classge211_1_1sprites_1_1_text__sprite_1_1_builder.html
https://en.cppreference.com/w/cpp/algorithm/is_permutation
https://en.cppreference.com/w/cpp/io/manip/setprecision
https://en.cppreference.com/w/cpp/io/manip/setprecision
https://tov.github.io/ge211/classge211_1_1geometry_1_1_transform.html
https://tov.github.io/ge211/classge211_1_1_sprite__set.html#a567a6cc041710e43a2511234590cc8b9
https://tov.github.io/ge211/classge211_1_1_sprite__set.html#a567a6cc041710e43a2511234590cc8b9

	Getting the starter code
	General idea
	Randomize the dictionary
	Keep score
	Testing
	Other ideas

