
EECS 211 Lab 6
Bejeweled

Winter 2019

Today we will be looking at yet another a C++ program using the
GE211 game engine in a reasonably advanced example game. You
may have played this game in various forms such as in Candy Crush
or other tile swapping games, but the basic concept is to destroy sets
of like tiles by swapping two tiles to create a set. In this version of the
game a set will be considered 3 or more tiles of the same type. You
can only make swaps that will result in the destruction of a set.

This game uses the model–view–controller pattern not-yet-
described in class, which allows defining the look, user interaction,
and “business logic” of an interactive program as separate com-
ponents. Provided are the Model class which defines the internal
game state, the View class for rendering game to the screen, and the
Controller class for reacting to user input and tying it all together.
In addition, because the tiles in this game are rather complex them-
selves, we have tiles.h which sets up Board_Position (where some-
thing is on a board, basic operators for that position, and functions
for finding what is around it), the Tile_Data (uses board positions),
defines a Tile_Handler for processing special types of tiles, the Tile

struct (a combination of tile data and handlers with the function for
swapping with another tile), and finally a Tile_Handler_Reference

that points to the specific handler to be used in a given tile. All of
this allows for the creation of more tile handlers which can each have
special destructive powers. You can see that we have provided the
normal handler (just delete the set of tiles we created) and a horizon-
tal lazer (deletes all tiles in the row in addition to the set we created
by swapping) inside the tile_handlers.cpp.

Getting the starter code

For this lab, the starter code is provided as a ZIP file here: http://

users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab06.

zip. Extract the archive file into a directory in the location of your
choosing. Once you have your new directory containing the starter
files, you can open it in CLion. Be careful, as CLion will only

work correctly if you open the
main project directory with the
CMakeLists.txt in it. If you open
any other directory, CLion may
create a CMakeLists.txt for you,
but it won’t work properly.

General idea

The version of Bejeweled that you have been given is not following all
of the rules we discussed earlier but is otherwise a fully functioning

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab06.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab06.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab06.zip


eecs 211 lab 6 2

version of Bejeweled. This game loads a board (defaults to 10 by
8) with several (defaults to 6) groups - which will behave as tile
colors for grouping same colors - and as many types as you have
tile handlers (starts at 2). From here, the controller decides when
to update a frame and in each update model_.run_step() is called
which is the brains behind finding what needs to change, detecting
the set of tiles to be destroyed (including any caused by destroying
a special type), and removes them as needed. Looking through this
function and the other functions it uses in the Model class should help
you understand how the game is utilizing tiles. The Controller also
utilizes some of the Model functions in Controller::on_mouse_up

which (when the view isn’t going through animations) on first click
of a valid tile will select that tile and on second click of another tile
will attempt to swap them. Upon swapping and creating a set to be
destroyed, that set of tiles will be removed and the tiles above them
will be shifted down, and new random tiles will also be shifted down
to fill the gaps created at the top. All of these changes are animated
by the View class which will make the program unresponsive to input
while it displays the changes slow enough for you to actually see
what happens.

More Valid Swaps

We mentioned above that this version of Bejeweled does not follow
all of the rules we described at the beginning. Specifically, this ver-
sion of Bejeweled allows for any two tiles that are next to each other
to be swapped instead of limiting the swaps to only those that will
create valid sets for destruction.

In controller.cpp the function discussed above - Controller::on_mouse_up
- uses model_.is_valid(bp) to check that the selection is inside the
board. However, we want something more complicated than just
checking that the selection is on the board, we also want to make sure
that the selection has a valid swap. Your job is to modify the code in
the Model class to only tell the Controller a selection is valid if it will
also be valid for a swap. To accomplish this you will have tom

1. Modify Model::is_valid to only return true when the position is
on the board and if the there is a possible valid swap. Remember,
there is a function Model::is_valid_swap that may be useful. As
well, keep in mind that there are four possible ways that a tile
could swap and the one you select only needs to be able to swap
with one of them (although more won’t hurt).

2. Modify Model::is_valid_swap to only return true when both tiles
are on the board, next to each other, and will result in a set of tiles



eecs 211 lab 6 3

to be destroyed. Consult the aforementioned model_.run_step()

to see how valid groups for destruction are created - even bigger
hint, look at Model::get_group_ to see how sets of a group of tiles
are found.

Cooler Tile Handlers

Currently, the special tile handlers are relatively boring. Your job is to
add a few more handlers to make the game more interesting. To add
a tile handler you will have to:

1. Create a new class in tile_handlers.h following the style of Normal
and Horizontal Lazer with your new name instead.

2. Define the process_removal function for your new class (follow
the style of Normal and Horizontal Lazer here as well but make
the inside of the function only choose the tiles to delete that you
want) inside tile_handlers.cpp.

Go ahead and add vertical lazer, destroy all tiles in this group, and
destroy all tiles on the diagonals (X) handlers. You will also need to
modify game.cpp to know about these new types:

1. Update types_count to the correct number of types you’ve added.

2. Inside the main() function the tile handlers are instantiated and
used in the call to Controller(...) by adding a Tile_Handler_Reference

to the set of handlers the game knows about. Instantiate your own
handlers and add the references to the game.


	Getting the starter code
	General idea
	More Valid Swaps
	Cooler Tile Handlers

