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Initial code setup

$ cd eecs211

$ wget $URL211/lec/02types_values.tgz

…

$ tar zxf 02types_values.tgz

$ cd 02types_values
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Introduction to int and double
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Defining a variable

Every variable in C must be defined with a type:

int x = 5;

double f = 5.1;

What does this do?

A variable names an object of the given type, which is a chunk
of memory that can hold a value of that type:

x: +0x00000005
f: +5.09999999999999964…e+00

(The notation AeB means A × 10B)
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Let’s observe this in C!

#include <stdio.h>

int main()

{

int x = 5;

double f = 5.1;

printf("x:␣%d\n", x);

printf("f:␣%.60e\n", f);

printf("sizeof␣x:␣%zu␣bytes\n", sizeof x);

printf("sizeof␣f:␣%zu␣bytes\n", sizeof f);

}
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Output from the previous slide

$

make build/types

cc -o build/types src/types.c -std=c11 -pedantic -

W…

$ build/types

x: 5

f: 5.0999999999999996447286321199499070644378662109…

sizeof x: 4 bytes

sizeof f: 8 bytes
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Including headers

This is a directive that causes the functions defined in stdio.h

to be known to the compiler:
#include <stdio.h>

(Without it, we wouldn’t have access to printf.)
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The main function

C programs can have multiple functions, but they always start
by calling main:
int main()

{

// ...

}

(The int is main’s return type. C programs return an error code to
the OS, where 0 means success and non-zero means failure. The
main function magically returns 0 for you if you don’t tell it otherwise.)
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Producing output

The usual way to print in C is the printf function, which takes
a format string followed by arguments to interpolate in place of
the format string’s directives:

printf("x:␣%d\n", x);

(Prints format string “x: %d\n”, replacing directive %d with the
value of x.)

Each directive specifies the type of the argument to print,
possibly with some options:

%d expects an int

%.60e expects a double; includes 60 digits of precision
%zu expects a size_t (the result of sizeof)
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Reading input

To input numbers in C, use the scanf function.

scanf reads keyboard input, converts it to the required type,
and stores it in an existing variable:

int x = 0;

scanf("%d", &x);

• Like printf, scanf uses a format string to determine what
type to convert the input to.

• But scanf’s directives are not all the same as printf’s!
(Use %lf to read a double.)

• An argument x would pass the value of variable x to
scanf, but &x means to pass x’s location.
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Example of reading input

#include <stdio.h>

int main()

{

int x = 0;

int y = 0;

printf("Enter␣two␣integers:␣");

scanf("%d%d", &x, &y);

printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}

11



Output from the previous slide

$

make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$

build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers:

5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$

build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers:

5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$

build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers:

five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$

build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers:

^D0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D

0 * 0 == 0

$

12



Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12



How scanf reports errors

scanf returns the number of successful conversions.
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Example of reading input and checking for errors

#include <stdio.h>

int main()

{

int x, y;

printf("Enter␣two␣integers:␣");

if (scanf("%d%d", &x, &y) != 2) {

printf("Input␣error\n");

return 1;

}

printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}
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Syntax for functions and arithmetic
#include <stdio.h>

unsigned long factorial(unsigned long n)

{

if (n == 0)

return 1;

else

return n * factorial(n - 1);

}

int main()

{

unsigned long n = 0;

scanf("%lu", &n);

printf("%lu!␣==␣%lu\n", n, factorial(n));

}
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Facts from the previous slide

• long is an integral type that might have more bits than int

(like maybe 64 instead of 32)
• unsigned means it does not include negative numbers

(which means it includes twice as many positive numbers
instead)

• * multiplies, - subtracts, and == compares for equality
• The result of a function must be given in a return

statement
• The printf and scanf directive for unsigned long is
%lu
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Something funny about int

Not every mathematical integer can fit in a C int.

• An int is stored in a finite number of bits (like 16 or 32 or
64)

• This means that it has a finite range
• For example, 32-bit ints (usually) range from −231 to
231 − 1 (inclusive)

• The actual values are defined in limits.h as INT_MIN
and INT_MAX

• An int operation whose mathematical result is out of
range produces UNDEFINED BEHAVIOR
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WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…

But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going
• Reformat your hard disk
• Launch the missiles
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Examples of UB

• Uninitialized memory access
• Integer division by 0
• Integer “overflow”

Example of all three:
int x, y;

scanf("%d%d", &x, &y);

printf("%d\n", x / y);

Fix for all three:
int x, y;

if (scanf("%d%d", &x, &y) == 2 &&

y != 0 &&

!(x == INT_MIN && y == -1))

printf("%d\n", x / y);
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UB is really weird
#include <limits.h>

#include <stdio.h>

void check_int(int z)

{

if (z < z + 1)

printf("math\n");

else

printf("C.S.\n");

}

int main()

{

check_int(0);

check_int(INT_MAX);

}
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The results depend on the optimization level

$

make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)
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Structure types
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Structure types in C

C (like BSL/ISL) uses structures to define new data types by
composition of existing data types
A structure type has a name and some number of fields, each
of which must be declared with a type
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Syntax to define a struct type

struct posn

{

double x;

double y;

};

struct circle

{

struct posn center;

double radius;

};

Note that the type defined by the struct posn definition, and
used for field center of struct circle is struct posn, not
merely posn. (In C++ you could refer to it either way, but not in
C.)
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Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields?

p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(double) function:

#include <math.h>

// Finds the Manhattan distance between two points.

double manhattan_dist(struct posn p, struct posn q)

{

return fabs(p.x - q.x) + fabs(p.y - q.y);

}
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Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…
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Defining and initializing a structure

Usually to get a structure in C, first you define a structure
variable and then initialize it by assigning each field:

struct posn p;

p.x = 3.0;

p.y = 4.0;

struct circle c;

c.center.x = 7.0;

c.center.y = -9.2;

c.radius = 6.4;

C won’t force you to initialize all the fields, but guess what
happens if you a access a field that hasn’t been initialized?
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Factory functions

If you get tired of initializing structures as on the previous slide,
you can always define a factory function to do the work:
struct circle

make_circle(struct posn center, double radius)

{

struct circle result;

result.center = center;

result.radius = radius;

return result;

}

(Note that functions can both take and return structure values.)
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Visualizing structure value layout

struct circle c;

c.center.x = 10.0;

c.radius = 50.0;

c.center.y = -7.0;

c:

1.000000000e1 -7.000000000e0 5.000000000e1
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Assignment

30



Values, objects, and variables

• Values are the actual information we want to work with:
numbers, strings, widgets, etc. Example: 3 is an int value.

• An object is a chunk of memory that can hold a value.
Example: if a function f has a declared parameter int x,
then each time f is invoked, a fresh object that can hold an
int value is created for it.

• A variable is the name of an object, such as x from the
previous bullet point.

Assigning a variable changes the value stored in the object that
is named by the variable.
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Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

What happens?

z: 5
The first statement is a definition, int z = 5. It creates an int

object, names it z, and initializes it to the value 5.
The second statement is an assignment, z = 7;. It replaces
the value 5 stored in the object named by z with the value 7.
The third statement is also an assignment, z = z + 4;. It first
retrieves the current value of z (7), then adds 4 to it, and then
stores the result (11) back in the object named by z.
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The key point: Indirection

A variable in C does not stand directly for a value.
A variable in C refers to a value indirectly, by naming an object
that contains a value.
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How to increment a variable

Simple:
x = x + 1;

Terse:
x += 1;

Auto-increment;
++x;

(Each of the above is actually an expression, and it has a value: the
new value of x.)
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– Next: Separate compilation –
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