
Types, Values & Variables
EECS 211

Winter 2019

Initial code setup

$ cd eecs211

$ wget $URL211/lec/02types_values.tgz

…

$ tar zxf 02types_values.tgz

$ cd 02types_values

2

Introduction to int and double

3

Defining a variable

Every variable in C must be defined with a type:

int x = 5;

double f = 5.1;

What does this do?

A variable names an object of the given type, which is a chunk
of memory that can hold a value of that type:

x: +0x00000005
f: +5.09999999999999964…e+00

(The notation AeB means A × 10B)

4

Defining a variable

Every variable in C must be defined with a type:

int x = 5;

double f = 5.1;

What does this do?
A variable names an object of the given type, which is a chunk
of memory that can hold a value of that type:

x: +0x00000005
f: +5.09999999999999964…e+00

(The notation AeB means A × 10B)

4

Let’s observe this in C!

#include <stdio.h>

int main()

{

int x = 5;

double f = 5.1;

printf("x:␣%d\n", x);

printf("f:␣%.60e\n", f);

printf("sizeof␣x:␣%zu␣bytes\n", sizeof x);

printf("sizeof␣f:␣%zu␣bytes\n", sizeof f);

}

5

Output from the previous slide

$

make build/types

cc -o build/types src/types.c -std=c11 -pedantic -

W…

$ build/types

x: 5

f: 5.0999999999999996447286321199499070644378662109…

sizeof x: 4 bytes

sizeof f: 8 bytes

6

Output from the previous slide

$ make build/types

cc -o build/types src/types.c -std=c11 -pedantic -

W…

$ build/types

x: 5

f: 5.0999999999999996447286321199499070644378662109…

sizeof x: 4 bytes

sizeof f: 8 bytes

6

Output from the previous slide

$ make build/types

cc -o build/types src/types.c -std=c11 -pedantic -

W…

$

build/types

x: 5

f: 5.0999999999999996447286321199499070644378662109…

sizeof x: 4 bytes

sizeof f: 8 bytes

6

Output from the previous slide

$ make build/types

cc -o build/types src/types.c -std=c11 -pedantic -

W…

$ build/types

x: 5

f: 5.0999999999999996447286321199499070644378662109…

sizeof x: 4 bytes

sizeof f: 8 bytes

6

Output from the previous slide

$ make build/types

cc -o build/types src/types.c -std=c11 -pedantic -

W…

$ build/types

x: 5

f: 5.0999999999999996447286321199499070644378662109…

sizeof x: 4 bytes

sizeof f: 8 bytes

6

Including headers

This is a directive that causes the functions defined in stdio.h

to be known to the compiler:
#include <stdio.h>

(Without it, we wouldn’t have access to printf.)

7

The main function

C programs can have multiple functions, but they always start
by calling main:
int main()

{

// ...

}

(The int is main’s return type. C programs return an error code to
the OS, where 0 means success and non-zero means failure. The
main function magically returns 0 for you if you don’t tell it otherwise.)

8

Producing output

The usual way to print in C is the printf function, which takes
a format string followed by arguments to interpolate in place of
the format string’s directives:

printf("x:␣%d\n", x);

(Prints format string “x: %d\n”, replacing directive %d with the
value of x.)

Each directive specifies the type of the argument to print,
possibly with some options:

%d expects an int

%.60e expects a double; includes 60 digits of precision
%zu expects a size_t (the result of sizeof)

9

Producing output

The usual way to print in C is the printf function, which takes
a format string followed by arguments to interpolate in place of
the format string’s directives:

printf("x:␣%d\n", x);

(Prints format string “x: %d\n”, replacing directive %d with the
value of x.)
Each directive specifies the type of the argument to print,
possibly with some options:

%d expects an int

%.60e expects a double; includes 60 digits of precision
%zu expects a size_t (the result of sizeof)

9

Reading input

To input numbers in C, use the scanf function.

scanf reads keyboard input, converts it to the required type,
and stores it in an existing variable:

int x = 0;

scanf("%d", &x);

• Like printf, scanf uses a format string to determine what
type to convert the input to.

• But scanf’s directives are not all the same as printf’s!
(Use %lf to read a double.)

• An argument x would pass the value of variable x to
scanf, but &x means to pass x’s location.

10

Reading input

To input numbers in C, use the scanf function.
scanf reads keyboard input, converts it to the required type,
and stores it in an existing variable:

int x = 0;

scanf("%d", &x);

• Like printf, scanf uses a format string to determine what
type to convert the input to.

• But scanf’s directives are not all the same as printf’s!
(Use %lf to read a double.)

• An argument x would pass the value of variable x to
scanf, but &x means to pass x’s location.

10

Reading input

To input numbers in C, use the scanf function.
scanf reads keyboard input, converts it to the required type,
and stores it in an existing variable:

int x = 0;

scanf("%d", &x);

• Like printf, scanf uses a format string to determine what
type to convert the input to.

• But scanf’s directives are not all the same as printf’s!
(Use %lf to read a double.)

• An argument x would pass the value of variable x to
scanf, but &x means to pass x’s location.

10

Example of reading input

#include <stdio.h>

int main()

{

int x = 0;

int y = 0;

printf("Enter␣two␣integers:␣");

scanf("%d%d", &x, &y);

printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}

11

Output from the previous slide

$

make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$

build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers:

5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$

build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers:

5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$

build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers:

five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$

build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers:

^D0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D

0 * 0 == 0

$

12

Output from the previous slide

$ make build/input

cc -o build/input src/input.c -std=c11 -pedantic -

W…

$ build/input

Enter two integers: 5 7

5 * 7 == 35

$ build/input

Enter two integers: 5 seven

5 * 0 == 0

$ build/input

Enter two integers: five 7

0 * 0 == 0

$ build/input

Enter two integers: ^D0 * 0 == 0

$

12

How scanf reports errors

scanf returns the number of successful conversions.

13

Example of reading input and checking for errors

#include <stdio.h>

int main()

{

int x, y;

printf("Enter␣two␣integers:␣");

if (scanf("%d%d", &x, &y) != 2) {

printf("Input␣error\n");

return 1;

}

printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}

14

Syntax for functions and arithmetic
#include <stdio.h>

unsigned long factorial(unsigned long n)

{

if (n == 0)

return 1;

else

return n * factorial(n - 1);

}

int main()

{

unsigned long n = 0;

scanf("%lu", &n);

printf("%lu!␣==␣%lu\n", n, factorial(n));

}

15

Facts from the previous slide

• long is an integral type that might have more bits than int

(like maybe 64 instead of 32)
• unsigned means it does not include negative numbers

(which means it includes twice as many positive numbers
instead)

• * multiplies, - subtracts, and == compares for equality
• The result of a function must be given in a return

statement
• The printf and scanf directive for unsigned long is
%lu

16

Something funny about int

Not every mathematical integer can fit in a C int.

• An int is stored in a finite number of bits (like 16 or 32 or
64)

• This means that it has a finite range
• For example, 32-bit ints (usually) range from −231 to
231 − 1 (inclusive)

• The actual values are defined in limits.h as INT_MIN
and INT_MAX

• An int operation whose mathematical result is out of
range produces UNDEFINED BEHAVIOR

17

Something funny about int

Not every mathematical integer can fit in a C int.

• An int is stored in a finite number of bits (like 16 or 32 or
64)

• This means that it has a finite range
• For example, 32-bit ints (usually) range from −231 to
231 − 1 (inclusive)

• The actual values are defined in limits.h as INT_MIN
and INT_MAX

• An int operation whose mathematical result is out of
range produces UNDEFINED BEHAVIOR

17

Something funny about int

Not every mathematical integer can fit in a C int.

• An int is stored in a finite number of bits (like 16 or 32 or
64)

• This means that it has a finite range

• For example, 32-bit ints (usually) range from −231 to
231 − 1 (inclusive)

• The actual values are defined in limits.h as INT_MIN
and INT_MAX

• An int operation whose mathematical result is out of
range produces UNDEFINED BEHAVIOR

17

Something funny about int

Not every mathematical integer can fit in a C int.

• An int is stored in a finite number of bits (like 16 or 32 or
64)

• This means that it has a finite range
• For example, 32-bit ints (usually) range from −231 to
231 − 1 (inclusive)

• The actual values are defined in limits.h as INT_MIN
and INT_MAX

• An int operation whose mathematical result is out of
range produces UNDEFINED BEHAVIOR

17

Something funny about int

Not every mathematical integer can fit in a C int.

• An int is stored in a finite number of bits (like 16 or 32 or
64)

• This means that it has a finite range
• For example, 32-bit ints (usually) range from −231 to
231 − 1 (inclusive)

• The actual values are defined in limits.h as INT_MIN
and INT_MAX

• An int operation whose mathematical result is out of
range produces UNDEFINED BEHAVIOR

17

Something funny about int

Not every mathematical integer can fit in a C int.

• An int is stored in a finite number of bits (like 16 or 32 or
64)

• This means that it has a finite range
• For example, 32-bit ints (usually) range from −231 to
231 − 1 (inclusive)

• The actual values are defined in limits.h as INT_MIN
and INT_MAX

• An int operation whose mathematical result is out of
range produces UNDEFINED BEHAVIOR

17

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…

But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going
• Reformat your hard disk
• Launch the missiles

18

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…
But the computer doesn’t necessarily notice…

Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going
• Reformat your hard disk
• Launch the missiles

18

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…
But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!

Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going
• Reformat your hard disk
• Launch the missiles

18

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…
But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going
• Reformat your hard disk
• Launch the missiles

18

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…
But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash

• Keep going
• Reformat your hard disk
• Launch the missiles

18

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…
But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going

• Reformat your hard disk
• Launch the missiles

18

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…
But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going
• Reformat your hard disk

• Launch the missiles

18

WTF IS UNDEFINED BEHAVIOR?!?!

It’s like a kind of error…
But the computer doesn’t necessarily notice…
Your program might just keep running and produce nonsense!
Technically, a program with UB has no meaning. It’s allowed to
do anything:

• Crash
• Keep going
• Reformat your hard disk
• Launch the missiles

18

Examples of UB

• Uninitialized memory access
• Integer division by 0
• Integer “overflow”

Example of all three:
int x, y;

scanf("%d%d", &x, &y);

printf("%d\n", x / y);

Fix for all three:
int x, y;

if (scanf("%d%d", &x, &y) == 2 &&

y != 0 &&

!(x == INT_MIN && y == -1))

printf("%d\n", x / y);

19

Examples of UB

• Uninitialized memory access
• Integer division by 0
• Integer “overflow”

Example of all three:
int x, y;

scanf("%d%d", &x, &y);

printf("%d\n", x / y);

Fix for all three:
int x, y;

if (scanf("%d%d", &x, &y) == 2 &&

y != 0 &&

!(x == INT_MIN && y == -1))

printf("%d\n", x / y);

19

Examples of UB

• Uninitialized memory access
• Integer division by 0
• Integer “overflow”

Example of all three:
int x, y;

scanf("%d%d", &x, &y);

printf("%d\n", x / y);

Fix for all three:
int x, y;

if (scanf("%d%d", &x, &y) == 2 &&

y != 0 &&

!(x == INT_MIN && y == -1))

printf("%d\n", x / y);

19

UB is really weird
#include <limits.h>

#include <stdio.h>

void check_int(int z)

{

if (z < z + 1)

printf("math\n");

else

printf("C.S.\n");

}

int main()

{

check_int(0);

check_int(INT_MAX);

}

20

The results depend on the optimization level

$

make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$

build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$

make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$

build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

The results depend on the optimization level

$ make build/int_max

cc -o build/int_max src/int_max.c -std=c11 -pedanti…

$ build/int_max

math

C.S.

$ make build/int_max.opt

cc -O2 -o build/int_max.opt src/int_max.c -std=c11 …

$ build/int_max.opt

math

math

$

(This is very, very bad.)

21

Structure types

22

Structure types in C

C (like BSL/ISL) uses structures to define new data types by
composition of existing data types
A structure type has a name and some number of fields, each
of which must be declared with a type

23

Syntax to define a struct type

struct posn

{

double x;

double y;

};

struct circle

{

struct posn center;

double radius;

};

Note that the type defined by the struct posn definition, and
used for field center of struct circle is struct posn, not
merely posn. (In C++ you could refer to it either way, but not in
C.)

24

Syntax to define a struct type

struct posn

{

double x;

double y;

};

struct circle

{

struct posn center;

double radius;

};

Note that the type defined by the struct posn definition, and
used for field center of struct circle is struct posn, not
merely posn. (In C++ you could refer to it either way, but not in
C.)

24

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields?

p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(double) function:

#include <math.h>

// Finds the Manhattan distance between two points.

double manhattan_dist(struct posn p, struct posn q)

{

return fabs(p.x - q.x) + fabs(p.y - q.y);

}

25

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields? p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(double) function:

#include <math.h>

// Finds the Manhattan distance between two points.

double manhattan_dist(struct posn p, struct posn q)

{

return fabs(p.x - q.x) + fabs(p.y - q.y);

}

25

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields? p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(double) function:

#include <math.h>

// Finds the Manhattan distance between two points.

double manhattan_dist(struct posn p, struct posn q)

{

return fabs(p.x - q.x) + fabs(p.y - q.y);

}

25

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields? p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(double) function:

#include <math.h>

// Finds the Manhattan distance between two points.

double manhattan_dist(struct posn p, struct posn q)

{

return fabs(p.x - q.x) + fabs(p.y - q.y);

}

25

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax

int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D

double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23

char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'

“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Creating a structure

C offers literal syntax for most types:

type examples of literal syntax
int 3, -6, 0xBAADF00D
double 3.5, 6.0221409e+23
char 'a', '␣', '0', 'n'
“string” "hello,␣world!"

struct (struct posn) {3.0, 4.0}

But this syntax for creating a struct is obscure! So the usual
way of doing things is a bit more awkward…

26

Defining and initializing a structure

Usually to get a structure in C, first you define a structure
variable and then initialize it by assigning each field:

struct posn p;

p.x = 3.0;

p.y = 4.0;

struct circle c;

c.center.x = 7.0;

c.center.y = -9.2;

c.radius = 6.4;

C won’t force you to initialize all the fields, but guess what
happens if you a access a field that hasn’t been initialized?

27

Factory functions

If you get tired of initializing structures as on the previous slide,
you can always define a factory function to do the work:
struct circle

make_circle(struct posn center, double radius)

{

struct circle result;

result.center = center;

result.radius = radius;

return result;

}

(Note that functions can both take and return structure values.)

28

Visualizing structure value layout

struct circle c;

c.center.x = 10.0;

c.radius = 50.0;

c.center.y = -7.0;

c:

1.000000000e1 -7.000000000e0 5.000000000e1

29

Visualizing structure value layout

struct circle c;

c.center.x = 10.0;

c.radius = 50.0;

c.center.y = -7.0;

c:

1.000000000e1 -7.000000000e0 5.000000000e1

29

Visualizing structure value layout

struct circle c;

c.center.x = 10.0;

c.radius = 50.0;

c.center.y = -7.0;

c: 1.000000000e1

-7.000000000e0 5.000000000e1

29

Visualizing structure value layout

struct circle c;

c.center.x = 10.0;

c.radius = 50.0;

c.center.y = -7.0;

c: 1.000000000e1

-7.000000000e0

5.000000000e1

29

Visualizing structure value layout

struct circle c;

c.center.x = 10.0;

c.radius = 50.0;

c.center.y = -7.0;

c: 1.000000000e1 -7.000000000e0 5.000000000e1

29

Assignment

30

Values, objects, and variables

• Values are the actual information we want to work with:
numbers, strings, widgets, etc. Example: 3 is an int value.

• An object is a chunk of memory that can hold a value.
Example: if a function f has a declared parameter int x,
then each time f is invoked, a fresh object that can hold an
int value is created for it.

• A variable is the name of an object, such as x from the
previous bullet point.

Assigning a variable changes the value stored in the object that
is named by the variable.

31

Values, objects, and variables

• Values are the actual information we want to work with:
numbers, strings, widgets, etc. Example: 3 is an int value.

• An object is a chunk of memory that can hold a value.
Example: if a function f has a declared parameter int x,
then each time f is invoked, a fresh object that can hold an
int value is created for it.

• A variable is the name of an object, such as x from the
previous bullet point.

Assigning a variable changes the value stored in the object that
is named by the variable.

31

Values, objects, and variables

• Values are the actual information we want to work with:
numbers, strings, widgets, etc. Example: 3 is an int value.

• An object is a chunk of memory that can hold a value.
Example: if a function f has a declared parameter int x,
then each time f is invoked, a fresh object that can hold an
int value is created for it.

• A variable is the name of an object, such as x from the
previous bullet point.

Assigning a variable changes the value stored in the object that
is named by the variable.

31

Values, objects, and variables

• Values are the actual information we want to work with:
numbers, strings, widgets, etc. Example: 3 is an int value.

• An object is a chunk of memory that can hold a value.
Example: if a function f has a declared parameter int x,
then each time f is invoked, a fresh object that can hold an
int value is created for it.

• A variable is the name of an object, such as x from the
previous bullet point.

Assigning a variable changes the value stored in the object that
is named by the variable.

31

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

What happens?

z: 5
The first statement is a definition, int z = 5. It creates an int

object, names it z, and initializes it to the value 5.
The second statement is an assignment, z = 7;. It replaces
the value 5 stored in the object named by z with the value 7.
The third statement is also an assignment, z = z + 4;. It first
retrieves the current value of z (7), then adds 4 to it, and then
stores the result (11) back in the object named by z.

32

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

What happens? z: 5
The first statement is a definition, int z = 5. It creates an int

object, names it z, and initializes it to the value 5.

The second statement is an assignment, z = 7;. It replaces
the value 5 stored in the object named by z with the value 7.
The third statement is also an assignment, z = z + 4;. It first
retrieves the current value of z (7), then adds 4 to it, and then
stores the result (11) back in the object named by z.

32

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

What happens? z: 7
The first statement is a definition, int z = 5. It creates an int

object, names it z, and initializes it to the value 5.
The second statement is an assignment, z = 7;. It replaces
the value 5 stored in the object named by z with the value 7.

The third statement is also an assignment, z = z + 4;. It first
retrieves the current value of z (7), then adds 4 to it, and then
stores the result (11) back in the object named by z.

32

Example of definition and assignment

int z = 5;

z = 7;

z = z + 4;

What happens? z: 11
The first statement is a definition, int z = 5. It creates an int

object, names it z, and initializes it to the value 5.
The second statement is an assignment, z = 7;. It replaces
the value 5 stored in the object named by z with the value 7.
The third statement is also an assignment, z = z + 4;. It first
retrieves the current value of z (7), then adds 4 to it, and then
stores the result (11) back in the object named by z.

32

The key point: Indirection

A variable in C does not stand directly for a value.
A variable in C refers to a value indirectly, by naming an object
that contains a value.

33

How to increment a variable

Simple:
x = x + 1;

Terse:
x += 1;

Auto-increment;
++x;

(Each of the above is actually an expression, and it has a value: the
new value of x.)

34

– Next: Separate compilation –

35

