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Initial code setup

$ cd eecs?11
$ curl $URL211/1lec/0@5pointer.tgz | tar zx

$ cd @5pointer



Road map

e What's a pointer?
e What can it do?
e What’s the point?
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Review: variables, objects, values

int main()
{
> int a =5, b = 10;
a = 12;
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{
int a =5, b = 10;
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b
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e Variables name objects, which contain values
e Assignment changes the value in an object
e Each object has an address
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Memory is a huge array,
and addresses are indices into it.

Array of chars: (hexadecimal)
. 100 101 102 103 104 105 106 107 108 109 110 111 ...

|48|65|GC|GC|6F|20|77|6F|72|BC|64|00|---
Array of shorts: (little endian)
... 100 102 104 106 108 110
| 6548 | 6C6C | 206F | 6F77 | 6C72 | 0064 |

Array of ints: (big endian)
. 100 104 108
. | 48656C6C | 6F20776F | 726C6400 |
Mixed! double and 4 chars:
. 100 108 109 110 111 ...

[ 1.56C6C6F20776Fp+135 | 72]6C|64]00]- -




Let’s see some real addresses

We can get the address of a variable using the & operator, and
format it with printf’s "sp" (after casting it to the “universal”
pointer type voidsx):

int main()

{
int a=5, b=7, c =9;

printf("a:_%d\n", a);
printf("b:_%d\n", b);
printf("c:_%d\n", c);

printf("&a:_%p\n", (voidx) &a);
printf("&b: _%p\n", (voidx) &b);
printf("&c: _%p\n", (voidx) &c);



Output from previous slide

$ build/addresses
a: 5
b: 7
c: 9
&a: 0x7ffee536816¢C
&b: 0x7ffee5368168
&c: Ox7ffee5368164



Output from previous slide

$ build/addresses
a: 5

b: 7

c: 9

&a: 0x7ffee536816¢C
&b: 0x7ffee5368168
&c: Ox7ffee5368164

Note that the addresses (in hexadecimal) are 4 bytes apart,
which must by sizeof(int) on my system.
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What'’s with the syntax?

intx p;
int *p;
int *x p;
intxp;
int
// o0_o

// “pisanintx”
// “xpisan int”
// don’t
// don’t
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Beware!

What does this mean?
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Beware!

What does this mean?

intx p, q; = int *p, Q; = int *p; int q;

So you gotta write:

intx p;
intk q; orint *p, *q; (butplease not int* p,* q;)

11



What can it do?

12



Try on C Tutor =
What can you do with a pointer?

You can dereference (or “follow”) it, using the x operator:

int main()
{
> inty=5, z=17;
intx ip = &y; // referent is y
z = xip + 1; // use value of referent
*xip = 9; // assign to referent

13
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have a pointer to an element of an array?* Can you have a
pointer to a field of struct which is an element of an array which
is a field of a struct?*

* Yes.
T Yes, but declaring it looks weird.
* Can you not have a pointer to an array?
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) ) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;
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Okay, but why?
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What's the point?

“Talk about” objects

Avoid copying

They’re super general
Unnamed objects (next time)
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. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
int temp = *ip;
*ip = *jp;
*xjp = temp;

}

» int x =5, y=17;
swap(&x, &y);
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Avoiding copying
#define N 1024

struct intvec
{
size_t count;
int datal[N];
i

void push(struct intvec r, int v)
{
r.datalr.count] = v;
++r.count;
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Avoiding copying
#define N 1024

struct intvec
{
size_t count;
int datal[N];
i

struct intvec push(struct intvec r, int v)
{

r.datalr.count] = v;

++r.count;

return r;
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Avoiding copying
#define N 1024

struct intvec
{
size_t count;
int datal[N];
i

void push(struct intvecx r, int v)
{
(xr).datal(xr).count] = v;
++(*r).count;

19



Avoiding copying
#define N 1024

struct intvec
{

size_t count;
int datalN];
i

void push(struct intvecx r, int v)
{
r—>data[r->count] = v;
++r—=>count;

b
Syntactic sugar: (ptr)y—>(field) means (x(ptr)) . (field)
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) Try on C Tutor =
Arrays decay to pointers

int all ={ 2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a);
(
(

put_int(ale]l);
put_int(xa);
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int all = {2, 3, 4, 5, 6 };
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put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al@]); // = 2

put_int(xa);
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) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };
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put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al@]); // = 2
put_int(xa); // = 2
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) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al@]); // = 2

put_int(xa); // = 2
put_ptr(&alll]l);

put_ptr(a + 1);

put_int(al[1l);

(

put_int(x(a + 1));
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) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(alo0l); // = 2

put_int(xa); // = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1);

put_int(al[1]);

(>

put_int(x(a + 1));
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) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0@
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(alo0l); // = 2

put_int(xa); /] = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1);

put_int(al[1]);

(o

put_int(x(a + 1));
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) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al0]); // = 2

put_int(xa); // = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1); // = 0x7ffee5c6e2f4
put_int(al1]l);

(s

put_int(x(a + 1));
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Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&ale]);
put_ptr(a);
put_int(al0]);
put_int(xa);

&l1l);
a+1);
al1l);

put_ptr
put_ptr
put_int
put_int

P

x(a + 1));

20
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Try on C Tutor =
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Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&ale]);
put_ptr(a);
put_int(al0]);
put_int(xa);

&l1l);
a+1);
al1l);

put_ptr
put_ptr
put_int
put_int

P

x(a + 1));
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) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f@
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al0]); /] = 2
put_int(xa); // = 2
put_ptr(&al[1]); // = 0x7ffee5c6e2f4
put_ptr(a + 1); // = 0x7ffee5c6e2f4
put_int(al[1l); // = 3
put_int(x(a + 1)); // = 3

put_size(sizeof a);
put_size(sizeof (a + 0));
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) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0@
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(alo0l); // = 2

put_int(xa); // = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1); // = 0x7ffee5c6e2f4
put_int(al[1l); // = 3

put_int(x(a + 1)); // = 3
put_size(sizeof a); // = 20

put_size(sizeof (a + @)); // = 8
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Array indexing is pointer arithmetic

(aexpr) [(iexpr)] means *((aexpr) + (iexpr))

21



Array indexing is pointer arithmetic

(aexpr) [(iexpr)] means *((aexpr) + (iexpr))
&(aexpr) [{iexpr)] means (aexpr) + (iexpr)
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Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 111, 32, 39, 67, 97, 116, 115, 33, @
¥

printf("%s\n", mystery);
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Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 97, 116, 115, 33, @
¥

printf("%s\n", mystery);
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Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 116, 115, 33, ©
¥

printf("%s\n", mystery);

22



Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 115, 33, ©
¥

printf("%s\n", mystery);

22



Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 's', 33, 0
¥

printf("%s\n", mystery);

22



Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 's', '!'', 0
¥

printf("%s\n", mystery);

22



Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 's', '!', "\0'
¥

printf("%s\n", mystery);

22



Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71’ IOI, 32, l\ll’ 67’ Ial, Itl, ISI’ l!l’ I\@I
¥

printf("%s\n", mystery);

22



How long is a C string?

int main()
{
const charx cptr = "12345";

23



How long is a C string?

int main()
{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr); // =7
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How long is a C string?

int main()

{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =7
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How long is a C string?

int main()

{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1
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How long is a C string?

int main()

{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr);
printf("%zu\n", sizeof xcptr);
printf("%zu\n", sizeof(const charx));
printf("%zu\n", sizeof(const char));
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How long is a C string?

int main()

{

const charx cptr = "12345";
printf("%zu\n", sizeof cptr);
printf("%zu\n", sizeof xcptr);
printf("%zu\n", sizeof(const charx));
printf("%zu\n", sizeof(const char));

const char carray[] = '"12345";
printf("%zu\n", sizeof carray);
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How long is a C string?

int main()

{

const charx cptr = "12345";
printf("%zu\n", sizeof cptr);
printf("%zu\n", sizeof xcptr);
printf("%zu\n", sizeof(const charx));
printf("%zu\n", sizeof(const char));

const char carray[] = '"12345";
printf("%zu\n", sizeof carray);
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How long is a C string?

int main()

{

const charx cptr = "12345";

printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1
printf("%zu\n", sizeof(const charx)); // =38
printf("%zu\n", sizeof(const char)); // =1

const char carray[] = "12345";
printf("%zu\n", sizeof carray); // =6
printf("%zu\n", sizeof(const charl[6])); // =6

23



How long is a C string?

int main()

{

const charx cptr = "12345";

printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1
printf("%zu\n", sizeof(const charx)); // =318
printf("%zu\n", sizeof(const char)); // =1

const char carray[] = "12345";
printf("%zu\n", sizeof carray); // =6
printf("%zu\n", sizeof(const charl[6])); // =6

for (size_t i = @; i < sizeof carray; ++i)

printf("%d,", (int) carrayl[il);
// =7
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How long is a C string?

int main()

{

const charx cptr = "12345";

printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1
printf("%zu\n", sizeof(const charx)); // =318
printf("%zu\n", sizeof(const char)); // =1

const char carray[] = "12345";
printf("%zu\n", sizeof carray); // =6
printf("%zu\n", sizeof(const charl[6])); // =6

for (size_t i = @; i < sizeof carray; ++i)

printf("%d,", (int) carrayl[il);
// =49 50 51 52 53 0
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A string algorithm

size_t count_chars(const charx s)
{

size_t result = 0;

while (*ks++) ++result;

return result;
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A string algorithm

size_t count_chars(const charx s)
{

size_t result = 0;

while (*ks++) ++result;

return result;

size_t count_chars(const charx s)
{
size_t i = 0;
while (s[i] !'= '\0@') ++i;
return 1i;

24



A string algorithm

size_t count_chars(const charx s)
{

size_t result = 0;

while (*ks++) ++result;

return result;

size_t count_chars(const charx s)
{

const charx t = s;

while (*t) ++t;

return t - s;

24



Counting characters

int main()

{
"12345",

"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray)); // =7
printf("%zu\n", count_chars(cptr)); // =7

25



Counting characters

int main()

{
"12345",

"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray)); // =5
printf("%zu\n", count_chars(cptr)); // =5
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Counting characters

int main()

{

"12345",
"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray));
printf("%zu\n", count_chars(cptr));

char buf[800] = {'a'};

printf("%zu\n", sizeof buf);
printf("%zu\n", count_chars(buf));
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Counting characters

int main()

{

''12345",
112345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray)); // =5
printf("%zu\n", count_chars(cptr)); // =5

char buf[800] = {'a'};

printf("%zu\n", sizeof buf); // = 800
printf("%zu\n", count_chars(buf)); // =1
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Counting characters

int main()

{

"12345",
"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray));
printf("%zu\n", count_chars(cptr));

char buf[800] = {'a'};
printf("%zu\n", sizeof buf);
printf("%zu\n", count_chars(buf));

buf[1] = buf[2] = buf[4] = buf[5] = 'b';

1
’

printf("%zu\n", count_chars(buf));
printf("%s\n", buf);
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Counting characters

int main()

{

"12345",
"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray));
printf("%zu\n", count_chars(cptr));

char buf[800] = {'a'};
printf("%zu\n", sizeof buf);
printf("%zu\n", count_chars(buf));

buf[1] = buf[2] = buf[4] = buf[5] = 'b';

1
’

printf("%zu\n", count_chars(buf));
printf("%s\n", buf);
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// =5
// =5

// = 800
// =1

// =3
// = abb



— Next: More objects than you can name —
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