Pointers

EECS 211
Winter 2019

Initial code setup

$ cd eecs?11
$ curl $URL211/1lec/0@5pointer.tgz | tar zx

$ cd @5pointer

Road map

e What's a pointer?
e What can it do?
e What’s the point?

What is a pointer?

Review: variables, objects, values

int main()
{
> int a =5, b = 10;
a = 12;

Review: variables, objects, values

int main()

{
int a =5, b = 10;
> a = 12;
}

a b

e Variables name objects, which contain values

Review: variables, objects, values

int main()
{
int a =5, b = 10;
a = 12;
>

a b

e Variables name objects, which contain values
e Assignment changes the value in an object

Review: variables, objects, values

int main()

{
int a =5, b = 10;
a = 12;

b

a@100 b @200

e Variables name objects, which contain values
e Assignment changes the value in an object
e Each object has an address

Memory is a huge array,
and addresses are indices into it.

Memory is a huge array,
and addresses are indices into it.

Array of chars: (hexadecimal)
. 100 101 102 103 104 105 106 107 108 109 110 111 ...

- [48]65[6CT6C[6F[20]77]6F] 72 [6C[64]00]---

Memory is a huge array,
and addresses are indices into it.

Array of chars: (hexadecimal)
. 100 101 102 103 104 105 106 107 108 109 110 111 ...

|48|65|GC|GC|6F|20|77|6F|72|BC|64|00|---
Array of shorts: (little endian)
... 100 102 104 106 108 110
| 6548 | 6C6C | 206F | 6F77 | 6C72 | 0064 |

Memory is a huge array,
and addresses are indices into it.

Array of chars: (hexadecimal)
. 100 101 102 103 104 105 106 107 108 109 110 111 ...

|48|65|GC|GC|6F|20|77|6F|72|BC|64|00|---
Array of shorts: (little endian)
... 100 102 104 106 108 110
| 6548 | 6C6C | 206F | 6F77 | 6C72 | 0064 |

Array of ints: (big endian)
. 100 104 108

| 48656C6C | 6F20776F | 726C6400 |---

Memory is a huge array,
and addresses are indices into it.

Array of chars: (hexadecimal)
. 100 101 102 103 104 105 106 107 108 109 110 111 ...

|48|65|GC|GC|6F|20|77|6F|72|BC|64|00|---
Array of shorts: (little endian)
... 100 102 104 106 108 110
| 6548 | 6C6C | 206F | 6F77 | 6C72 | 0064 |

Array of ints: (big endian)
. 100 104 108
. | 48656C6C | 6F20776F | 726C6400 |
Mixed! double and 4 chars:
. 100 108 109 110 111 ...

[1.56C6C6F20776Fp+135 | 72]6C|64]00]- -

Let’s see some real addresses

We can get the address of a variable using the & operator, and
format it with printf’s "sp" (after casting it to the “universal”
pointer type voidsx):

int main()

{
int a=5, b=7, c =9;

printf("a:_%d\n", a);
printf("b:_%d\n", b);
printf("c:_%d\n", c);

printf("&a:_%p\n", (voidx) &a);
printf("&b: _%p\n", (voidx) &b);
printf("&c: _%p\n", (voidx) &c);

Output from previous slide

$ build/addresses
a: 5
b: 7
c: 9
&a: 0x7ffee536816¢C
&b: 0x7ffee5368168
&c: Ox7ffee5368164

Output from previous slide

$ build/addresses
a: 5

b: 7

c: 9

&a: 0x7ffee536816¢C
&b: 0x7ffee5368168
&c: Ox7ffee5368164

Note that the addresses (in hexadecimal) are 4 bytes apart,
which must by sizeof(int) on my system.

Pointers

e We can store the address of one object in another object

https://goo.gl/JQ11GC

Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer

https://goo.gl/JQ11GC

Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
> int a=5, b=7;
intx ip;
ip = &a;
ip = &b;

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
int a =5, b=7;
> intx ip;
ip = &a;
ip = &b;
}

a@100 b @104

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
int a =5, b=7;
intx ip;
> ip = &a;
ip = &b;

s

a@100 b@104 ip @108

[]

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
int a =5, b=7;
intx ip;
ip = &a;
> ip = &b;

s

a@100 b@104 ip @108

100

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
int a =5, b=7;
intx ip;
ip = &a;
ip = &b;

> }

a@100 b@104 ip @108

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
int a =5, b=7;
intx ip;
> ip = &a;
ip = &b;

s

a@100 b@104 ip @108

[]

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
int a =5, b=7;
intx ip;
ip = &a;
> ip = &b;

s

a@100 b@104 ip @108

9

https://goo.gl/JQ11GC

] Try on C Tutor =
Pointers

e We can store the address of one object in another object
e A object containing an address is called a pointer
e A pointer to an object of any type T has type T*

int main()
{
int a =5, b=7;
intx ip;
ip = &a;
ip = &b;

> }

a@100 b@104 ip @108

M O]
9

https://goo.gl/JQ11GC

What'’s with the syntax?

intx p;

10

What'’s with the syntax?

intx p;
int *p;

10

What'’s with the syntax?

intx p;
int *p;
int *x p;
intxp;

10

What'’s with the syntax?

intx p;
int *p;
int *x p;
intxp;
int

10

What'’s with the syntax?

intx p;

int *p;

int % p; //don’t

intxp; // don’t
int

*
p

10

What'’s with the syntax?

intx p;
int *p;
int % p; //don’t
intxp; // don’t
int
// o0_o
>k

P

10

What'’s with the syntax?

intx p;
int *p;
int *x p;
intxp;
int
// o0_o

// “pisanintx”
// “xpisan int”
// don’t
// don’t

10

Beware!

What does this mean?

intx p, q;

11

Beware!

What does this mean?

intx p, q; = int *p, q;

11

Beware!

What does this mean?

intx p, q; = int *p, Q; = int *p; int q;

11

Beware!

What does this mean?

intx p, q; = int *p, q;

So you gotta write:

intx p;
intx q;

11

int *p; int q;

Beware!

What does this mean?

intx p, q; = int *p, q;

So you gotta write:

intx p;
intx q; orint *xp, *q;

11

int *p; int q;

Beware!

What does this mean?

intx p, q; = int *p, Q; = int *p; int q;

So you gotta write:

intx p;
intk q; orint *p, *q; (butplease not int* p,* q;)

11

What can it do?

12

Try on C Tutor =
What can you do with a pointer?

You can dereference (or “follow”) it, using the x operator:

int main()
{
> inty=5, z=17;
intx ip = &y; // referent is y
z = xip + 1; // use value of referent
*xip = 9; // assign to referent

13

https://goo.gl/xttJSK

Try on C Tutor =
What can you do with a pointer?

You can dereference (or “follow”) it, using the x operator:

int main()
{
inty=5, z=17;
> intx ip = &y; // referent is y
z = xip + 1; // use value of referent
*xip = 9; // assign to referent
b

y @100 z @104

13

https://goo.gl/xttJSK

Try on C Tutor =
What can you do with a pointer?

You can dereference (or “follow”) it, using the x operator:

int main()
{
inty=5, z=17;
intx ip = &y; // referent is y
> z = xip + 1; // use value of referent
*xip = 9; // assign to referent
b

y @100 z@104 ip @108

13

https://goo.gl/xttJSK

Try on C Tutor =
What can you do with a pointer?

You can dereference (or “follow”) it, using the x operator:

int main()
{
inty=5, z=17;
intx ip = &y; // referent is y
z = xip + 1; // use value of referent
> *xip = 9; // assign to referent
b

y @100 z@104 ip @108

\@/@

13

https://goo.gl/xttJSK

Try on C Tutor =
What can you do with a pointer?

You can dereference (or “follow”) it, using the x operator:

int main()
{
inty=5, z=17;
intx ip = &y; // referent is y
z = xip + 1; // use value of referent
*xip = 9; // assign to referent
> }

y @100 z@104 ip @108

E\@/@

13

https://goo.gl/xttJSK

FAQ

14

FAQ

Can a struct contain a struct?

14

FAQ

Can a struct contain a struct? Can a struct contain an array?

14

FAQ

Can a struct contain a struct? Can a struct contain an array?
Can a struct contain a pointer?

14

FAQ

Can a struct contain a struct? Can a struct contain an array?
Can a struct contain a pointer? Can you have an array of
structs? Can you have an array of arrays? Can you have an
array of pointers?

14

FAQ

Can a struct contain a struct? Can a struct contain an array?
Can a struct contain a pointer? Can you have an array of
structs? Can you have an array of arrays? Can you have an
array of pointers? Can you have a pointer to a struct? Can you
have a pointer to an array? Can you have a pointer to a
pointer?

14

FAQ

Can a struct contain a struct? Can a struct contain an array?
Can a struct contain a pointer? Can you have an array of
structs? Can you have an array of arrays? Can you have an
array of pointers? Can you have a pointer to a struct? Can you
have a pointer to an array? Can you have a pointer to a
pointer? Can you have a pointer to a field of a struct?

14

FAQ

Can a struct contain a struct? Can a struct contain an array?
Can a struct contain a pointer? Can you have an array of
structs? Can you have an array of arrays? Can you have an
array of pointers? Can you have a pointer to a struct? Can you
have a pointer to an array? Can you have a pointer to a
pointer? Can you have a pointer to a field of a struct? Can you
have a pointer to an element of an array?

14

FAQ

Can a struct contain a struct? Can a struct contain an array?
Can a struct contain a pointer? Can you have an array of
structs? Can you have an array of arrays? Can you have an
array of pointers? Can you have a pointer to a struct? Can you
have a pointer to an array? Can you have a pointer to a
pointer? Can you have a pointer to a field of a struct? Can you
have a pointer to an element of an array? Can you have a
pointer to a field of struct which is an element of an array which
is a field of a struct?

14

FAQ

Can a struct contain a struct?* Can a struct contain an array?*
Can a struct contain a pointer?* Can you have an array of
structs?* Can you have an array of arrays? Can you have an
array of pointers?* Can you have a pointer to a struct?* Can you
have a pointer to an array? Can you have a pointer to a
pointer?* Can you have a pointer to a field of a struct?* Can you
have a pointer to an element of an array?* Can you have a
pointer to a field of struct which is an element of an array which
is a field of a struct?*

* Yes.

14

FAQ

Can a struct contain a struct?* Can a struct contain an array?*
Can a struct contain a pointer?* Can you have an array of
structs?* Can you have an array of arrays?t Can you have an
array of pointers?* Can you have a pointer to a struct?* Can you
have a pointer to an array? Can you have a pointer to a
pointer?* Can you have a pointer to a field of a struct?* Can you
have a pointer to an element of an array?* Can you have a
pointer to a field of struct which is an element of an array which
is a field of a struct?*

* Yes.

T Yes, but declaring it looks weird.

14

FAQ

Can a struct contain a struct?* Can a struct contain an array?*
Can a struct contain a pointer?* Can you have an array of
structs?* Can you have an array of arrays?t Can you have an
array of pointers?* Can you have a pointer to a struct?* Can you
have a pointer to an array?* Can you have a pointer to a
pointer?* Can you have a pointer to a field of a struct?* Can you
have a pointer to an element of an array?* Can you have a
pointer to a field of struct which is an element of an array which
is a field of a struct?*

* Yes.
T Yes, but declaring it looks weird.
* Can you not have a pointer to an array?

14

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

15

https://goo.gl/aYAV2j

Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal3]11[6];
entry *some_entry;
short *xsome_subentry;
entry xsome_entries[12];
entry (xsome_row) [6];
entry sxxsome_ptr;

15

Try on C Tutor =

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix
{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry *some_entry;
short *xsome_subentry;
entry xsome_entries[12];
entry (xsome_row) [6];
entry sxksome_ptr;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix
{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *xsome_subentry;
entry xsome_entries[12];
entry (xsome_row) [6];
entry sksome_ptr;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12];
entry (xsome_row) [6];
entry sxsome_ptr;

I

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6];
entry *xksome_ptr;

I

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry sksome_ptr;

I

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; //arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry sksome_ptr; // pointer to pointer to struct

I

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry sxxsome_ptr; / / pointer to pointer to struct
Fom;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry sxxsome_ptr; / / pointer to pointer to struct
Fom;

m.data[2] [5].h = 6;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry skxsome_ptr; / / pointer to pointer to struct
Fom;

m.some_entry = &m.datalrow] [col];
m.some_subentry = &m.datalrow] [col].k;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry skxsome_ptr; / / pointer to pointer to struct
Fom;
m.some_entry = &(((m.data) [row]l)[coll);
m.some_subentry = &((((m.data)[rowl)[coll).k);

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry skxsome_ptr; / / pointer to pointer to struct
Fom;

m.some_entry = &(m.datalrow] [coll);
m.some_subentry = &(m.datalrow]l [coll.k);

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry sxxsome_ptr; / / pointer to pointer to struct
Fom;

m.some_entry->k = 7;
*m.some_subentry = 7;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry sxxsome_ptr; / / pointer to pointer to struct
Fom;

m.some_entry—>k = 7;
*(m.some_subentry) = 7;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry skxsome_ptr; / / pointer to pointer to struct
Fom;

m.some_entries[1] = &m.datal[1][2];
m.some_entries[1]->h = 8;

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry sxxsome_ptr; / / pointer to pointer to struct
Fom;

m.some_row = &m.datalrow];
(km.some_row) [col]l.h = 9; // necessary parentheses!

15

https://goo.gl/aYAV2j

)) . Try on C Tutor =
Everything is compositional

typedef struct { short h, k; } entry;

struct matrix

{
entry datal[3][6]; // array of 3 arrays of 6 structs
entry xsome_entry; // pointer to struct
short *some_subentry; // pointer to field of struct
entry xsome_entries[12]; // arrayof 12 pointers to structs
entry (xsome_row) [6]; // pointer to array of 6 structs
entry skxsome_ptr; / / pointer to pointer to struct
Fom;

m.some_ptr = &m.some_entries[cur];
*xm.some_ptr = m.some_entry;

15

https://goo.gl/aYAV2j

Okay, but why?

16

What's the point?

“Talk about” objects

Avoid copying

They’re super general
Unnamed objects (next time)

17

. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
int temp = *ip;
*ip = *jp;
*xjp = temp;

}

» int x =5, y=17;
swap(&x, &y);

18

https://goo.gl/755wYQ

. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
int temp = *ip;
*ip = *jp;
*xjp = temp;

}

int x =5,y =7;
» swap(&x, &y);

X @100 y @104

18

https://goo.gl/755wYQ

. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
> int temp = *ip;
*ip = *jp;
*xjp = temp;
}

int x =5,y =7;
swap(&x, &y);

(caller’s stack frame)

(swap’s stack frame)

18

https://goo.gl/755wYQ

. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
int temp = *ip;
> *xip = *jp;
*xjp = temp;
b

int x =5,y =7;
swap(&x, &y);

(caller’s stack frame)

jp @208 temp @216 (S)
104 swap’s stack frame

18

https://goo.gl/755wYQ

. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
int temp = *ip;
*ip = *jp;
> *xjp = temp;
}

int x =5,y =7;
swap(&x, &y);

(caller’s stack frame)

jp @208 temp @216 (S)
104 swap’s stack frame

18

https://goo.gl/755wYQ

. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
int temp = *ip;
*ip = *jp;
*xjp = temp;
> }

int x =5,y =7;
swap(&x, &y);

(caller’s stack frame)

jp @208 temp @216 (S)
104 swap’s stack frame

18

https://goo.gl/755wYQ

. Try on C Tutor =
Let’s talk about objects -

void swap(intx ip, intx jp)

{
int temp = *ip;
*ip = *jp;
*xjp = temp;

}

int x =5,y =7;
swap(&x, &y);
>

X @100 y @104

(caller’s stack frame)

18

https://goo.gl/755wYQ

Avoiding copying
#define N 1024

struct intvec
{
size_t count;
int datal[N];
i

void push(struct intvec r, int v)
{
r.datalr.count] = v;
++r.count;

19

Avoiding copying
#define N 1024

struct intvec
{
size_t count;
int datal[N];
i

struct intvec push(struct intvec r, int v)
{

r.datalr.count] = v;

++r.count;

return r;

19

Avoiding copying
#define N 1024

struct intvec
{
size_t count;
int datal[N];
i

void push(struct intvecx r, int v)
{
(xr).datal(xr).count] = v;
++(*r).count;

19

Avoiding copying
#define N 1024

struct intvec
{

size_t count;
int datalN];
i

void push(struct intvecx r, int v)
{
r—>data[r->count] = v;
++r—=>count;

b
Syntactic sugar: (ptr)y—>(field) means (x(ptr)) . (field)

19

) Try on C Tutor =
Arrays decay to pointers

int all ={ 2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a);
(
(

put_int(ale]l);
put_int(xa);

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(alo0l);

put_int(xa);

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al@]); // = 2

put_int(xa);

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al@]); // = 2
put_int(xa); // = 2

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al@]); // = 2

put_int(xa); // = 2
put_ptr(&alll]l);

put_ptr(a + 1);

put_int(al[1l);

(

put_int(x(a + 1));

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(alo0l); // = 2

put_int(xa); // = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1);

put_int(al[1]);

(>

put_int(x(a + 1));

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0@
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(alo0l); // = 2

put_int(xa); /] = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1);

put_int(al[1]);

(o

put_int(x(a + 1));

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al0]); // = 2

put_int(xa); // = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1); // = 0x7ffee5c6e2f4
put_int(al1]l);

(s

put_int(x(a + 1));

20

https://goo.gl/sFDEvk

Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&ale]);
put_ptr(a);
put_int(al0]);
put_int(xa);

&l1l);
a+1);
al1l);

put_ptr
put_ptr
put_int
put_int

P

x(a + 1));

20

//
//
//
//

//
//
//

R

b4l

Try on C Tutor =

0x7ffee5c6e2f0
0x7ffee5cbe2f0
2
2

Ox7ffee5cbe2f4
0x7ffee5cbe2f4
3

https://goo.gl/sFDEvk

Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&ale]);
put_ptr(a);
put_int(al0]);
put_int(xa);

&l1l);
a+1);
al1l);

put_ptr
put_ptr
put_int
put_int

P

x(a + 1));

20

//
//
//
//

//
//
//
//

R

44l

Try on C Tutor =

0x7ffee5c6e2f0
0x7ffee5cbe2f0
2
2

0x7ffeebcbe2f4
0x7ffee5cbe2f4
3
3

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f@
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(al0]); /] = 2
put_int(xa); // = 2
put_ptr(&al[1]); // = 0x7ffee5c6e2f4
put_ptr(a + 1); // = 0x7ffee5c6e2f4
put_int(al[1l); // = 3
put_int(x(a + 1)); // = 3

put_size(sizeof a);
put_size(sizeof (a + 0));

20

https://goo.gl/sFDEvk

) Try on C Tutor =
Arrays decay to pointers

int all = {2, 3, 4, 5, 6 };

put_ptr(&alo]); // = 0x7ffee5c6e2f0@
put_ptr(a); // = 0x7ffee5c6e2f0
put_int(alo0l); // = 2

put_int(xa); // = 2
put_ptr(&all]l); // = 0x7ffee5c6e2f4
put_ptr(a + 1); // = 0x7ffee5c6e2f4
put_int(al[1l); // = 3

put_int(x(a + 1)); // = 3
put_size(sizeof a); // = 20

put_size(sizeof (a + @)); // = 8

20

https://goo.gl/sFDEvk

Array indexing is pointer arithmetic

(aexpr) [(iexpr)] means *((aexpr) + (iexpr))

21

Array indexing is pointer arithmetic

(aexpr) [(iexpr)] means *((aexpr) + (iexpr))
&(aexpr) [{iexpr)] means (aexpr) + (iexpr)

21

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 111, 32, 39, 67, 97, 116, 115, 33, @
¥

printf("%s\n", mystery);

22

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 97, 116, 115, 33, @
¥

printf("%s\n", mystery);

22

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 116, 115, 33, ©
¥

printf("%s\n", mystery);

22

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 115, 33, ©
¥

printf("%s\n", mystery);

22

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 's', 33, 0
¥

printf("%s\n", mystery);

22

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 's', '!'', 0
¥

printf("%s\n", mystery);

22

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71, 'o', 32, 39, 67, 'a', 't', 's', '!', "\0'
¥

printf("%s\n", mystery);

22

Strings are arrays of chars

#include <stdio.h>

int main()
{
char mystery[] = {

71’ IOI, 32, l\ll’ 67’ Ial, Itl, ISI’ l!l’ I\@I
¥

printf("%s\n", mystery);

22

How long is a C string?

int main()
{
const charx cptr = "12345";

23

How long is a C string?

int main()
{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr); // =7

23

How long is a C string?

int main()
{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr); // =8

23

How long is a C string?

int main()

{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =7

23

How long is a C string?

int main()

{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1

23

How long is a C string?

int main()

{
const charx cptr = "12345";
printf("%zu\n", sizeof cptr);
printf("%zu\n", sizeof xcptr);
printf("%zu\n", sizeof(const charx));
printf("%zu\n", sizeof(const char));

23

// =8
// =1
// =8
// =1

How long is a C string?

int main()

{

const charx cptr = "12345";
printf("%zu\n", sizeof cptr);
printf("%zu\n", sizeof xcptr);
printf("%zu\n", sizeof(const charx));
printf("%zu\n", sizeof(const char));

const char carray[] = '"12345";
printf("%zu\n", sizeof carray);

23

// =8
// =1
// =8
// =1

// =7

How long is a C string?

int main()

{

const charx cptr = "12345";
printf("%zu\n", sizeof cptr);
printf("%zu\n", sizeof xcptr);
printf("%zu\n", sizeof(const charx));
printf("%zu\n", sizeof(const char));

const char carray[] = '"12345";
printf("%zu\n", sizeof carray);

23

// =8
// =1
// =8
// =1

// =6

How long is a C string?

int main()

{

const charx cptr = "12345";

printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1
printf("%zu\n", sizeof(const charx)); // =38
printf("%zu\n", sizeof(const char)); // =1

const char carray[] = "12345";
printf("%zu\n", sizeof carray); // =6
printf("%zu\n", sizeof(const charl[6])); // =6

23

How long is a C string?

int main()

{

const charx cptr = "12345";

printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1
printf("%zu\n", sizeof(const charx)); // =318
printf("%zu\n", sizeof(const char)); // =1

const char carray[] = "12345";
printf("%zu\n", sizeof carray); // =6
printf("%zu\n", sizeof(const charl[6])); // =6

for (size_t i = @; i < sizeof carray; ++i)

printf("%d,", (int) carrayl[il);
// =7

23

How long is a C string?

int main()

{

const charx cptr = "12345";

printf("%zu\n", sizeof cptr); // =8
printf("%zu\n", sizeof xcptr); // =1
printf("%zu\n", sizeof(const charx)); // =318
printf("%zu\n", sizeof(const char)); // =1

const char carray[] = "12345";
printf("%zu\n", sizeof carray); // =6
printf("%zu\n", sizeof(const charl[6])); // =6

for (size_t i = @; i < sizeof carray; ++i)

printf("%d,", (int) carrayl[il);
// =49 50 51 52 53 0

23

A string algorithm

size_t count_chars(const charx s)
{

size_t result = 0;

while (*ks++) ++result;

return result;

24

A string algorithm

size_t count_chars(const charx s)
{

size_t result = 0;

while (*ks++) ++result;

return result;

size_t count_chars(const charx s)
{
size_t i = 0;
while (s[i] !'= '\0@') ++i;
return 1i;

24

A string algorithm

size_t count_chars(const charx s)
{

size_t result = 0;

while (*ks++) ++result;

return result;

size_t count_chars(const charx s)
{

const charx t = s;

while (*t) ++t;

return t - s;

24

Counting characters

int main()

{
"12345",

"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray)); // =7
printf("%zu\n", count_chars(cptr)); // =7

25

Counting characters

int main()

{
"12345",

"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray)); // =5
printf("%zu\n", count_chars(cptr)); // =5

25

Counting characters

int main()

{

"12345",
"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray));
printf("%zu\n", count_chars(cptr));

char buf[800] = {'a'};

printf("%zu\n", sizeof buf);
printf("%zu\n", count_chars(buf));

25

// =5
// =5

// =7
// =7

Counting characters

int main()

{

''12345",
112345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray)); // =5
printf("%zu\n", count_chars(cptr)); // =5

char buf[800] = {'a'};

printf("%zu\n", sizeof buf); // = 800
printf("%zu\n", count_chars(buf)); // =1

25

Counting characters

int main()

{

"12345",
"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray));
printf("%zu\n", count_chars(cptr));

char buf[800] = {'a'};
printf("%zu\n", sizeof buf);
printf("%zu\n", count_chars(buf));

buf[1] = buf[2] = buf[4] = buf[5] = 'b';

1
’

printf("%zu\n", count_chars(buf));
printf("%s\n", buf);

25

// =5
// =5

// = 800
// =1

// = 7?
// =7

Counting characters

int main()

{

"12345",
"12345";

const char carrayl]
*xcptr

printf("%zu\n", count_chars(carray));
printf("%zu\n", count_chars(cptr));

char buf[800] = {'a'};
printf("%zu\n", sizeof buf);
printf("%zu\n", count_chars(buf));

buf[1] = buf[2] = buf[4] = buf[5] = 'b';

1
’

printf("%zu\n", count_chars(buf));
printf("%s\n", buf);

25

// =5
// =5

// = 800
// =1

// =3
// = abb

— Next: More objects than you can name —

26

