
Dynamic memory
EECS 211

Winter 2019

Initial code setup

$ cd eecs211

$ curl $URL211/lec/06dynamic.tgz | tar zx

…

$ cd 06dynamic

2

Oops!
I made a mistake. In C, the declaration
struct circle read_circle();

means that read_circle takes any number of arguments.

In “traditional” C, arguments weren’t checked:
min2(); // declaration

min3() // definition

x, y, z;

{

return min2(x, min2(y, z));

}

The correct way to say “no arguments” in C is
struct circle read_circle(void);

3

Oops!
I made a mistake. In C, the declaration
struct circle read_circle();

means that read_circle takes any number of arguments.
In “traditional” C, arguments weren’t checked:
double min2(); // declaration

double min3() // definition

double x, y, z;

{

return min2(x, min2(y, z));

}

The correct way to say “no arguments” in C is
struct circle read_circle(void);

3

Oops!
I made a mistake. In C, the declaration
struct circle read_circle();

means that read_circle takes any number of arguments.
In “traditional” C, arguments weren’t checked:
min2(); // declaration

min3() // definition

int x, y, z;

{

return min2(x, min2(y, z));

}

The correct way to say “no arguments” in C is
struct circle read_circle(void);

3

Oops!
I made a mistake. In C, the declaration
struct circle read_circle();

means that read_circle takes any number of arguments.
In “traditional” C, arguments weren’t checked:
min2(); // declaration

min3() // definition

int x, y, z;

{

return min2(x, min2(y, z));

}

The correct way to say “no arguments” in C is
struct circle read_circle(void);

3

And now, strings...

4

How can we work with strings?

bool is_comment(const string*);

// Concatenates array of strings; strips comments.

string strip_concat(const string* begin,

const string* end)

{

string result = "";

while (begin < end) {

if (! is_comment(begin))

result += *begin + "\n";

++begin;

}

return result;

}

This is actually C++.

5

How can we work with strings?

bool is_comment(const string*);

// Concatenates array of strings; strips comments.

string strip_concat(const string* begin,

const string* end)

{

string result = "";

while (begin < end) {

if (! is_comment(begin))

result += *begin + "\n";

++begin;

}

return result;

}

This is actually C++.
5

How can we work with strings?

bool is_comment(const string*);

// Concatenates array of strings; strips comments.

string strip_concat(const string* begin,

const string* end)

{

string result = "";

while (begin < end) {

if (! is_comment(begin))

result += *begin + "\n";

++begin;

}

return result;

}

This is actually (very inefficient) C++.
5

Where should strings live?

Solution

Problem

in each function’s automatic storage

inflexible & inefficient

in one function’s automatic storage

functions return

someplace else…

difficult

6

Where should strings live?

Solution Problem
in each function’s automatic storage

inflexible & inefficient

in one function’s automatic storage

functions return

someplace else…

difficult

6

Where should strings live?

Solution Problem
in each function’s automatic storage inflexible & inefficient
in one function’s automatic storage

functions return

someplace else…

difficult

6

Where should strings live?

Solution Problem
in each function’s automatic storage inflexible & inefficient
in one function’s automatic storage functions return
someplace else…

difficult

6

Where should strings live?

Solution Problem
in each function’s automatic storage inflexible & inefficient
in one function’s automatic storage functions return
someplace else… difficult

6

A uniform-capacity string

Can be passed, returned, assigned:
#define MAXSTRLEN 80

struct string80

{

char data[MAXSTRLEN + 1];

};

typedef struct string80 string80_t;

The easy-but-inflexible solution: all strings have the same
capacity
See src/string80.h

7

So we work with '\0'-terminated char*s

The C string:
void copy_string_into(char* dst, const char* src)

{

while ((*dst++ = *src++))

{ }

}

This works provided src is actually terminated and dst has
sufficient capacity
See str/ptr_string.c

But how can we ensure that dst has sufficient capacity?

8

So we work with '\0'-terminated char*s

The C string:
void copy_string_into(char* dst, const char* src)

{

while ((*dst++ = *src++))

{ }

}

This works provided src is actually terminated and dst has
sufficient capacity
See str/ptr_string.c

But how can we ensure that dst has sufficient capacity?

8

Okay, but where should we store dst?

#include "ptr_string.h"

#include <stdio.h>

int main()

{

// Actually stored in the “static area”:
const char message[] = "On␣the␣stack!";

// Stored in main’s stack frame:
char buf[sizeof message];

copy_string_into(buf, message);

printf("%s\n", buf);

str_toupper_inplace(buf);

printf("%s\n", buf);

}

9

This function is wrong, and cannot work

#include "ptr_string.h"

char* bad_str_toupper_copy(const char* s)

{

char result[count_chars(s) + 1];

str_toupper_into(result, s);

return result;

}

Why?

The result points to an object that is destroyed when
bad_str_toupper_copy returns.

10

This function is wrong, and cannot work

#include "ptr_string.h"

char* bad_str_toupper_copy(const char* s)

{

char result[count_chars(s) + 1];

str_toupper_into(result, s);

return result;

}

Why? The result points to an object that is destroyed when
bad_str_toupper_copy returns.

10

Dynamic memory allocation: The basics

• Function void* malloc(size_t size) requests size
bytes of memory from the system.

• malloc() either returns a pointer to a new object of the
requested size, or indicates failure by returning special
“pointer-to-nowhere” NULL.

• Function void free(void* ptr) releases memory back
to the system.

(Type void* literally means “pointer to nothing,” but better to think of
it as a pointer to uninitialized memory of unknown size.)

11

Dynamic memory allocation: The basics

• Function void* malloc(size_t size) requests size
bytes of memory from the system.

• malloc() either returns a pointer to a new object of the
requested size, or indicates failure by returning special
“pointer-to-nowhere” NULL.

• Function void free(void* ptr) releases memory back
to the system.

(Type void* literally means “pointer to nothing,” but better to think of
it as a pointer to uninitialized memory of unknown size.)

11

Dynamic memory allocation: The basics

• Function void* malloc(size_t size) requests size
bytes of memory from the system.

• malloc() either returns a pointer to a new object of the
requested size, or indicates failure by returning special
“pointer-to-nowhere” NULL.

• Function void free(void* ptr) releases memory back
to the system.

(Type void* literally means “pointer to nothing,” but better to think of
it as a pointer to uninitialized memory of unknown size.)

11

Dynamic memory allocation: The rules

1. Every pointer returned by malloc() must be
NULL-checked (because dereferencing NULL is UB)

2. Every object returned by malloc() must have its address
passed to free() exactly once (because otherwise you
leak memory)

3. After an object is freed, it must not be accessed (read or
written) or freed again (or else UB)

4. A object that was not obtained from malloc() must not be
freed (or else nasal demons)

5. Except: free(NULL) is just fine

12

Dynamic memory allocation: The rules

1. Every pointer returned by malloc() must be
NULL-checked (because dereferencing NULL is UB)

2. Every object returned by malloc() must have its address
passed to free() exactly once (because otherwise you
leak memory)

3. After an object is freed, it must not be accessed (read or
written) or freed again (or else UB)

4. A object that was not obtained from malloc() must not be
freed (or else nasal demons)

5. Except: free(NULL) is just fine

12

Dynamic memory allocation: The rules

1. Every pointer returned by malloc() must be
NULL-checked (because dereferencing NULL is UB)

2. Every object returned by malloc() must have its address
passed to free() exactly once (because otherwise you
leak memory)

3. After an object is freed, it must not be accessed (read or
written) or freed again (or else UB)

4. A object that was not obtained from malloc() must not be
freed (or else nasal demons)

5. Except: free(NULL) is just fine

12

Dynamic memory allocation: The rules

1. Every pointer returned by malloc() must be
NULL-checked (because dereferencing NULL is UB)

2. Every object returned by malloc() must have its address
passed to free() exactly once (because otherwise you
leak memory)

3. After an object is freed, it must not be accessed (read or
written) or freed again (or else UB)

4. A object that was not obtained from malloc() must not be
freed (or else nasal demons)

5. Except: free(NULL) is just fine

12

Dynamic memory allocation: The rules

1. Every pointer returned by malloc() must be
NULL-checked (because dereferencing NULL is UB)

2. Every object returned by malloc() must have its address
passed to free() exactly once (because otherwise you
leak memory)

3. After an object is freed, it must not be accessed (read or
written) or freed again (or else UB)

4. A object that was not obtained from malloc() must not be
freed (or else nasal demons)

5. Except: free(NULL) is just fine

12

Heap allocation example
#include "ptr_string.h"

#include <stdlib.h>

char* string_clone(const char* s)

{

char* result = malloc(count_chars(s) + 1);

if (result) copy_string_into(result, s);

return result;

}

char* str_toupper_clone(const char* s)

{

char* result = malloc(count_chars(s) + 1);

if (result) str_toupper_into(result, s);

return result;

}

13

Concatenating two strings, result in the heap
#include <stdlib.h>

#include <string.h>

char* string_concat(const char* s, const char* t)

{

size_t s_len = strlen(s); // count_chars

size_t t_len = strlen(t);

char* result = malloc(s_len + t_len + 1);

if (result == NULL) return NULL;

strcpy(result, s); // copy_string_into

strcpy(result + s_len, t);

return result;

}

14

Our initial example

char* strip_concat(char** lines, size_t count)

{

size_t total_len = 0;

for (size_t i = 0; i < count; ++i)

if (! is_comment(lines[i]))

total_len += strlen(lines[i]) + 1;

char* result = malloc(total_len + 1);

if (result == NULL) return NULL;

char* fill = result;

for (size_t i = 0; i < count; ++i) {

if (! is_comment(lines[i])) {

fill = stpcpy(fill, lines[i]);

*fill++ = '\n';

}

}

*fill = '\0';

return result;

}

See src/string_fun.c and test/test_string_fun.c.

15

– Next: Linked data structures –

16

NULL versus nul versus null

Thing Type of Thing Purpose of Thing

“[a] null [pointer]” T* for any T stands for a missing object
NULL void* null pointer constant
'\0' (a/k/a nul) int 0 with character connotation

So NULL is null, but nul is something completely different.

17

NULL versus nul versus null

Thing Type of Thing Purpose of Thing
“[a] null [pointer]” T* for any T stands for a missing object

NULL void* null pointer constant
'\0' (a/k/a nul) int 0 with character connotation

So NULL is null, but nul is something completely different.

17

NULL versus nul versus null

Thing Type of Thing Purpose of Thing
“[a] null [pointer]” T* for any T stands for a missing object
NULL void* null pointer constant

'\0' (a/k/a nul) int 0 with character connotation

So NULL is null, but nul is something completely different.

17

NULL versus nul versus null

Thing Type of Thing Purpose of Thing
“[a] null [pointer]” T* for any T stands for a missing object
NULL void* null pointer constant
'\0' (a/k/a nul) int 0 with character connotation

So NULL is null, but nul is something completely different.

17

NULL versus nul versus null

Thing Type of Thing Purpose of Thing
“[a] null [pointer]” T* for any T stands for a missing object
NULL void* null pointer constant
'\0' (a/k/a nul) int 0 with character connotation

So NULL is null, but nul is something completely different.

17

