
Access Control
EECS 211

Winter 2019

Road map

• A borrowed string view type
• Adding access control

2

A borrowed string view type

3

A borrowed string view type
We can use pointer ranges to represent borrowed strings:
struct string_view

{

const char* begin;

const char* end;

};

TEST_CASE("constructing␣a␣string_view")

{

const char s[] = "hello\0world";

string_view sv1 {s, s + std::strlen(s)};

CHECK(sv1.end - sv1.begin == 5);

string_view sv2 {s, s + sizeof s - 1};

CHECK(sv2.end - sv2.begin == 11);

}

4

A borrowed string view type
We can use pointer ranges to represent borrowed strings:
struct string_view

{

const char* begin;

const char* end;

};

TEST_CASE("constructing␣a␣string_view")

{

const char s[] = "hello\0world";

string_view sv1 {s, s + std::strlen(s)};

CHECK(sv1.end - sv1.begin == 5);

string_view sv2 {s, s + sizeof s - 1};

CHECK(sv2.end - sv2.begin == 11);

}

4

A borrowed string view type
We can use pointer ranges to represent borrowed strings:
struct string_view

{

const char* begin;

const char* end;

};

TEST_CASE("constructing␣a␣string_view")

{

const char s[] = "hello\0world";

string_view sv1 {s, s + std::strlen(s)};

CHECK(sv1.end - sv1.begin == 5);

string_view sv2 {s, s + sizeof s - 1};

CHECK(sv2.end - sv2.begin == 11);

}

4

Adding a member function
In C++, struct members are not only variables. Here we add
a member function:
struct string_view

{

size_t size() const; // function member

const char* begin; // data member

const char* end; // data member

};

TEST_CASE("string_view::size()␣const")

{

const char* s = "hello\0world";

string_view sv {s, s + 11};

CHECK(sv.size() == 11);

}

5

Adding a member function
In C++, struct members are not only variables. Here we add
a member function:
struct string_view

{

size_t size() const; // function member

const char* begin; // data member

const char* end; // data member

};

TEST_CASE("string_view::size()␣const")

{

const char* s = "hello\0world";

string_view sv {s, s + 11};

CHECK(sv.size() == 11);

}

5

Why a member function?

Why not this?:
size_t size(string_view sv)

{

return sv.end - sv.begin;

}

Special things members can do:

• access other, private members (we’ll see this soon)
• override lifecycle operations (we’ll see this soon)
• not really nice having global function named size

6

Why a member function?

Why not this?:
size_t size(string_view sv)

{

return sv.end - sv.begin;

}

Special things members can do:

• access other, private members (we’ll see this soon)
• override lifecycle operations (we’ll see this soon)
• not really nice having global function named size

6

How do we define a member function?

Member function definitions:

• Have their names prefixed by Type::
• Take an implicit parameter Type* this or
const Type* this

size_t string_view::size() const

{

// `this` has type `const string_view*`

return this->end - this->begin;

}

Also, this-> is implicit on member names!

7

How do we define a member function?

Member function definitions:

• Have their names prefixed by Type::
• Take an implicit parameter Type* this or
const Type* this

size_t string_view::size() const

{

// `this` has type `const string_view*`

return end - begin;

}

Also, this-> is implicit on member names!

7

Aside: Member access syntax

What is the difference between thing.member and
thing::member?

• Type::member access a member of a type (struct or class)
• instance.member access a member of a value

Examples:

• string_view::size names the size member function of
the string_view type in general

• an_sv.size means the size member function on a
particular instance of string_view (an_sv)

• an_sv.begin means the begin member variable of a
particular instance of string_view (an_sv)

• string_view::begin (usually) doesn’t mean anything

8

Aside: Member access syntax

What is the difference between thing.member and
thing::member?

• Type::member access a member of a type (struct or class)
• instance.member access a member of a value

Examples:

• string_view::size names the size member function of
the string_view type in general

• an_sv.size means the size member function on a
particular instance of string_view (an_sv)

• an_sv.begin means the begin member variable of a
particular instance of string_view (an_sv)

• string_view::begin (usually) doesn’t mean anything

8

Aside: Member access syntax

What is the difference between thing.member and
thing::member?

• Type::member access a member of a type (struct or class)
• instance.member access a member of a value

Examples:

• string_view::size names the size member function of
the string_view type in general

• an_sv.size means the size member function on a
particular instance of string_view (an_sv)

• an_sv.begin means the begin member variable of a
particular instance of string_view (an_sv)

• string_view::begin (usually) doesn’t mean anything

8

Operator overloading

We can tell C++ the meaning of operators (like == and +) for our
types.
Declaration (goes in .h):
bool operator==(string_view, string_view);

Definition (goes in .cpp):

#include <algorithm>

bool operator==(string_view a, string_view b)

{

return a.size() == b.size() &&

std::equal(a.begin, a.end, b.begin);

}

9

More operator overloading

We can also make our new type printable.
Declaration (goes in .h):
std::ostream& operator<<(std::ostream&, string_view);

Definition (goes in .cpp):
std::ostream& operator<<(std::ostream& os,

string_view sv)

{

return os.write(sv.begin, sv.size());

}

10

Making construction more convenient
A constructor is:

• a member function
• with no result type
• whose name is the same as the name of the struct.

If you declare constructors then all object creation goes via the
constructor. For example:

struct string_view

{

string_view(const char* start, size_t size);

const char *begin, *end;

};

const char* s = "hello";

string_view sv {s, s + 5}; // error: no match

string_view sv {s, 5}; // all good

11

Making construction more convenient
A constructor is:

• a member function
• with no result type
• whose name is the same as the name of the struct.

If you declare constructors then all object creation goes via the
constructor. For example:
struct string_view

{

string_view(const char* start, size_t size);

const char *begin, *end;

};

const char* s = "hello";

string_view sv {s, s + 5}; // error: no match

string_view sv {s, 5}; // all good

11

Making construction more convenient
A constructor is:

• a member function
• with no result type
• whose name is the same as the name of the struct.

If you declare constructors then all object creation goes via the
constructor. For example:
struct string_view

{

string_view(const char* start, size_t size);

const char *begin, *end;

};

const char* s = "hello";

string_view sv {s, s + 5}; // error: no match

string_view sv {s, 5}; // all good

11

How does that make it more convenient though?
Multiple constructors, chosen by argument type:
struct string_view

{

string_view(const char* begin, const char* end);

string_view(const char* start, size_t size);

string_view(const char* c_str);

string_view(String const& s);

...

};

const char* s1 = "hello\0world";

String s2(s1, s1 + 11); // future constructor

string_view sv1(s1, s1 + 11); // 1st constructor

string_view sv2(s1, 11); // 2nd constructor

string_view sv3(s1); // 3rd constructor

string_view sv4(s2); // 4th constructor

12

How does that make it more convenient though?
Multiple constructors, chosen by argument type:
struct string_view

{

string_view(const char* begin, const char* end);

string_view(const char* start, size_t size);

string_view(const char* c_str);

string_view(String const& s);

...

};

const char* s1 = "hello\0world";

String s2(s1, s1 + 11); // future constructor

string_view sv1(s1, s1 + 11); // 1st constructor

string_view sv2(s1, 11); // 2nd constructor

string_view sv3(s1); // 3rd constructor

string_view sv4(s2); // 4th constructor

12

How does that make it more convenient though?
Multiple constructors, chosen by argument type:
struct string_view

{

string_view(const char* begin, const char* end);

string_view(const char* start, size_t size);

string_view(const char* c_str);

string_view(String const& s);

...

};

const char* s1 = "hello\0world";

String s2(s1, s1 + 11); // future constructor

string_view sv1(s1, s1 + 11); // 1st constructor

string_view sv2(s1, 11); // 2nd constructor

string_view sv3(s1); // 3rd constructor

string_view sv4(s2); // 4th constructor

12

Defining constructors
Constructors have a special syntax for initializing member
variables:

string_view::string_view(const char* begin0,

const char* end0)

: begin(begin0)

, end(end0)

{ } // <= regular function body, often left empty

Constructors can also delegate to other constructors:

string_view::string_view(const char* start,

size_t size)

: string_view(start, start + size) { }

string_view::string_view(const char* c_str)

: string_view(c_str, std::strlen(c_str)) { }

13

Defining constructors
Constructors have a special syntax for initializing member
variables:

string_view::string_view(const char* begin0,

const char* end0)

: begin(begin0)

, end(end0)

{ } // <= regular function body, often left empty

Constructors can also delegate to other constructors:

string_view::string_view(const char* start,

size_t size)

: string_view(start, start + size) { }

string_view::string_view(const char* c_str)

: string_view(c_str, std::strlen(c_str)) { }

13

Constructors can enforce invariants

Suppose we decide that a valid string_view should never
has a negative size.
C++ can help us guarantee this for all string_views.

The first step is to avoid constructing invalid string_views.

14

Constructors can enforce invariants

Suppose we decide that a valid string_view should never
has a negative size.
C++ can help us guarantee this for all string_views.
The first step is to avoid constructing invalid string_views.

14

Constructors can enforce invariants

Suppose we decide that a valid string_view should never
has a negative size.
C++ can help us guarantee this for all string_views.
The first step is to avoid constructing invalid string_views.
We could fix improper ranges:

string_view::string_view(const char* begin0,

const char* end0)

: begin(begin0)

, end(std::max(begin0, end0))

{ }

14

Constructors can enforce invariants

Suppose we decide that a valid string_view should never
has a negative size.
C++ can help us guarantee this for all string_views.
The first step is to avoid constructing invalid string_views.
Or we could reject improper ranges:
string_view::string_view(const char* begin0,

const char* end0)

: begin(begin0)

, end(end0)

{

if (end0 < begin0)

throw std::invalid_argument(BAD_RANGE);

}

This ensures we never construct an invalid string_view.

14

Okay, but what if I…?

const char* s = "hello";

string_view sv(s);

sv.end = sv.begin - 3;

Oh no!

15

Okay, but what if I…?

const char* s = "hello";

string_view sv(s);

sv.end = sv.begin - 3;

Oh no!

15

Okay, but what if I…?

const char* s = "hello";

string_view sv(s);

sv.end = sv.begin - 3;

Oh no!

15

Okay, but what if I…?

const char* s = "hello";

string_view sv(s);

sv.end = sv.begin - 3;

Oh no!

15

Member access control

16

New idea: Access modifiers

With access modifiers, we can control exactly what client code
is allowed to do with our struct:

struct Name

{

// visible to all

private:

// visible only to other members

public:

// visible to all

}

17

Introducing classes

Technically, classes and structs differ only in their default
access modifier:

• class T { ... }; ≡ struct T { private: ... };

• struct T { ... }; ≡ class T { public: ... };

But in connotation, we will use class for “smart data” and
struct for “plain old data.”

18

Introducing classes

Technically, classes and structs differ only in their default
access modifier:

• class T { ... }; ≡ struct T { private: ... };

• struct T { ... }; ≡ class T { public: ... };

But in connotation, we will use class for “smart data” and
struct for “plain old data.”

18

Plan for encapsulation

1. Make member variables private
2. Add public member functions to let clients access what we

want them to access
3. Don’t add public member functions that let clients do bad

things

19

A string_view class

class string_view

{

public:

// Constructors:

string_view(const char*, const char*);

string_view(String const&);

...

// Accessors:

const char* begin() const;

const char* end() const;

private:

const char *begin_, *end_;

};

20

Implementing the accessors

const char* string_view::begin() const

{

return begin_;

}

const char* string_view::end() const

{

return end_;

}

21

Non-member functions must use accessors

Doesn’t work because string_view::begin_ and
string_view::end_ are private:
bool operator==(string_view a, string_view b)

{

return a.size() == b.size() &&

std::equal(a.begin_, a.end_, b.begin_);

}

This is a good thing, because it means that non-members can’t
break our carefully preserved invariants

22

Non-member functions must use accessors

Works because string_view::begin() and
string_view::end() are public:
bool operator==(string_view a, string_view b)

{

return a.size() == b.size() &&

std::equal(a.begin(), a.end(), b.begin());

}

This is a good thing, because it means that non-members can’t
break our carefully preserved invariants

22

Non-member functions must use accessors

Works because string_view::begin() and
string_view::end() are public:
bool operator==(string_view a, string_view b)

{

return a.size() == b.size() &&

std::equal(a.begin(), a.end(), b.begin());

}

This is a good thing, because it means that non-members can’t
break our carefully preserved invariants

22

Welcome to encapsulation!

Encapsulation is a software engineering principle that says:

1. Bundle your data and your operations together
2. Don’t let non-bundled operations mess with your bundled

data

Benefits:

• Correctness: only your operations are responsible for
preserving invariants, because clients cannot mess them
up

• Flexibility: you can change details of the implementation
without changing clients, provided the API remains the
same

23

Welcome to encapsulation!

Encapsulation is a software engineering principle that says:

1. Bundle your data and your operations together
2. Don’t let non-bundled operations mess with your bundled

data

Benefits:

• Correctness: only your operations are responsible for
preserving invariants, because clients cannot mess them
up

• Flexibility: you can change details of the implementation
without changing clients, provided the API remains the
same

23

Example of flexibility
Client code can’t distinguish this from the previous version:
class string_view

{

public:

string_view(const char*, const char*);

string_view(const char*, size_t);

...

size_t size() const;

const char* begin() const;

const char* end() const;

private:

const char* start_;

size_t size_;

};

24

– Next: Real RAII, really? —

25

