
EECS 214 Fall 2015

HW4: Graphs and MSTs
Due: Monday, December 7, at 11:59 PM, via Canvas

You may work on your own or with one (1) partner.

For this assignment you will implement an API for weighted, undirected graphs; then you
will use this API, along with your solutions to previous homework assignments, to implement
Kruskal’s algorithm for computing a minimum spanning forest (detailed below).
In mst.rkt I’ve supplied headers for the functions that you’ll need to write, along with a
few suggested helpers and some code to help with testing.

Background

Definitions

• A graph is connected if there is a path from every vertex to every other; otherwise it
comprises two or more connected components, each of which is a maximal connected
subgraph. (A connected component is maximal in the sense that no additional vertices
could be added and still have it be connected.)

• A spanning tree of a connected graph G is a subgraph that includes all of G’s vertices,
but only enough edges for it to be connected and no more. Cycles would introduce
redundant connectivity, so it’s a tree. Note that the number of edges in a spanning
tree is always one less than the number of vertices in the original graph.

• A minimum spanning tree for a connected graph is a spanning tree with minimum
total weight. (There may be a tie.) We can interpret an MST as follows: If vertices
represent sites of some kind, edges potential connections between them, and weights
the costs of those edges, then an MST gives the lowest cost way to connect all the sites.

• A graph that isn’t connected has a miniumum spanning tree for each of its connected
components. This collection of MSTs is a minimum spanning forest.

Kruskal’s algorithm

The result of Kruskal’s algorithm is a graph with the same vertices as the input graph, but
whose edges form a minimum spanning tree (or forest). The result graph starts with all of
the vertices from the input graph and no edges. In other words, initially each vertex forms
its own (degenerate) connected component.
The algorithm works by maintaining the set of connected components in the result (using
a union-find data structure); it repeatedly adds an edge that connects two components,

http://users.eecs.northwestern.edu/~jesse/course/eecs214-fa15/hw/4/mst.rkt


EECS 214 Fall 2015

thus unifying them into one. In particular, to achieve minimality, it considers the edges in
order from lightest weight to heaviest. For each edge, if its two vertices are already in the
same connected component of the result graph, the edge is ignored; but if the edge would
connect vertices that are in two different connected components then the edge is added to
the resulting graph, thus joining the two components into one. When all edges have been
considered then the result is a minimum spanning tree (or forest, as appropriate).

Your task

Part I: Graphs

First you will need to define your representation, the WUGraph data type. A WUGraph represents
a weighted, unordered graph, where vertices are identified by consecutive natural numbers
from 0, and weights are arbitrary numbers:
;; Vertex is N
;; Weight is Number

The API also uses a data type for weights that includes infinity:
;; A MaybeWeight is one of:
;; -- Weight
;; -- +inf.0

Your graph representation is up to you—you may use either adjacency lists or an adjacency
matrix.
Once you’ve defined your graph representation, you will have to implement five functions for
working with graphs:

make-graph : N -> WUGraph
set-edge! : WUGraph Vertex Vertex MaybeWeight -> Void
graph-size : WUGraph -> N
get-edge : WUGraph Vertex Vertex -> MaybeWeight
get-adjacent : WUGraph Vertex -> [List-of Vertex]

To construct a graph, we would start with (make-graph n), which returns a new graph having
n vertices and no edges. Then we add edges using (set-edge! g u v w), which connects
vertices u and v by an edge having weight w. The weight w may be an actual numeric weight
or it may be +inf.0, which effectively removes the edge.
(graph-size g) returns the number of vertices in g, which is the same as the number origi-
nally passed to make-graph to create the graph. (get-edge g u v) returns the weight of the
edge from u to v, which will be +inf.0 if there is no such edge. Note that because the graph
is undirected, (get-edge g u v) should always be the same as (get-edge g v u).1 Finally

1This probably means that set-edge! needs to maintain an invariant.



EECS 214 Fall 2015

(get-adjacent g v) returns a list of all the vertices adjacent to v in graph g—note that an
undirected graph does not distinguish predecessors from successors.

Part II: MSTs

Once you have a working graph API, you should implement Kruskal’s algorithm as a function
kruskal-mst : WUGraph -> WUGraph. Given any weighted, undirected graph g, (kruskal-mst g)
returns a graph with the same vertices as g and edges forming a minimum spanning forest,
using the algorithm as described above.
In order to maintain and query the set of connected components, Kruskal’s algorithm uses
union-find. You should use your union-find data structure and operations from HW3. There’s
no good way to import it, so you will have to copy and paste. (If you’re working with a
different partner now than you did for HW3 then you may use either your own union-find
or theirs.)
In order to consider the edges in order by increasing weight, Kruskal’s algorithm requires
sorting the edges by weight. I used my HW2 solution to write a heap sort (which works
by adding all the things to sort to a heap and then removing them), but you may use any
sorting algorithm you wish.
I’ve listed some helpers that you may find useful at the bottom of mst.rkt.

Deliverable

The provided file mst.rkt (http://goo.gl/q3QfuL), containing

1. a definition of your WUGraph data type,

2. complete, working definitions of the five graph API functions specified above, and

3. a working implementation of kruskal-mst.

Thorough testing is strongly recommended but will not be graded.

http://users.eecs.northwestern.edu/~jesse/course/eecs214-fa15/hw/4/mst.rkt
http://users.eecs.northwestern.edu/~jesse/course/eecs214-fa15/hw/4/mst.rkt
http://goo.gl/q3QfuL

