
Asymptotic Complexity
EECS 214

October 28, 2015

Finding things in an array

int find_in_unsorted_array(int needle, int* haystack, int size)

{

for (int i = 0; i < size; ++i) {

if (needle == haystack[i]) return i;

}

return -1;

}

In the worst case, how long does this take? size iterations

2:1

Finding things in an array

int find_in_unsorted_array(int needle, int* haystack, int size)

{

for (int i = 0; i < size; ++i) {

if (needle == haystack[i]) return i;

}

return -1;

}

In the worst case, how long does this take?

size iterations

2:2

Finding things in an array

int find_in_unsorted_array(int needle, int* haystack, int size)

{

for (int i = 0; i < size; ++i) {

if (needle == haystack[i]) return i;

}

return -1;

}

In the worst case, how long does this take? size iterations

2:3

Finding things in a sorted array

bool find_in_sorted_array(int needle, int* haystack, int size)

{

int start = 0, limit = size;

while (start < limit) {

int mid = (start + limit) / 2;

if (needle < haystack[mid]) limit = mid;

else if (needle > haystack[mid]) start = mid + 1

else return mid;

}

return false;

}

In the worst case, how long does this take?

3:1

Finding things in a sorted array

bool find_in_sorted_array(int needle, int* haystack, int size)

{

int start = 0, limit = size;

while (start < limit) {

int mid = (start + limit) / 2;

if (needle < haystack[mid]) limit = mid;

else if (needle > haystack[mid]) start = mid + 1

else return mid;

}

return false;

}

In the worst case, how long does this take?

3:2

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000

2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:1

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000

3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:2

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000

4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:3

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500

5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:4

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250

6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:5

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675

7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:6

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837

8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:7

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918

9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:8

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959

10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:9

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:10

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490

12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:11

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245

13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:12

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123

14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:13

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62

15 32
16 16
17 8
18 4
19 2
20 1

4:14

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32

16 16
17 8
18 4
19 2
20 1

4:15

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16

17 8
18 4
19 2
20 1

4:16

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8

18 4
19 2
20 1

4:17

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4

19 2
20 1

4:18

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2

20 1

4:19

How many times can we divide the array in half?

Suppose size is 1,000,000. Then:

of divs. size remaining
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,675
7 7,837
8 3,918
9 1,959
10 980

of divs. size remaining
11 490
12 245
13 123
14 62
15 32
16 16
17 8
18 4
19 2
20 1

4:20

How many times can we divide an array of size n
in half?

log2 n

5:1

Time to search array

Linear search Binary search
c1n + c2 d1 log n + d2

6:1

Definition of big O

Let f : R → R. Then we define the set of functions O(f) as follows:

A function g ∈ O(f) iff there are some m and c
such that for all n > m,

g(n) ≤ cf (n) .

Intuitively:
• m means that we care about large inputs and can ignore

small inputs up to some size.
• c is a constant factor, since we don’t care about differences of

a constant factor (since that just corresponds to making a
computer faster)

7:1

Definition of big O

Let f : R → R. Then we define the set of functions O(f) as follows:

A function g ∈ O(f) iff there are some m and c
such that for all n > m,

g(n) ≤ cf (n) .

Intuitively:
• m means that we care about large inputs and can ignore

small inputs up to some size.
• c is a constant factor, since we don’t care about differences of

a constant factor (since that just corresponds to making a
computer faster)

7:2

Big O definition example

Let’s show that d1 log n ∈ O(c1n).

Choose c = d1
c1 and m = 1. (These are guesses.)

To show:

d1 log n ≤ d1

c1
(c1n) for n > 1

log n ≤ n by algebra

This is true for n > 0, so it is true for n > 1.

8:1

Big O definition example

Let’s show that d1 log n ∈ O(c1n).

Choose c = d1
c1 and m = 1. (These are guesses.)

To show:

d1 log n ≤ d1

c1
(c1n) for n > 1

log n ≤ n by algebra

This is true for n > 0, so it is true for n > 1.

8:2

Big O definition example

Let’s show that d1 log n ∈ O(c1n).

Choose c = d1
c1 and m = 1. (These are guesses.)

To show:

d1 log n ≤ d1

c1
(c1n) for n > 1

log n ≤ n by algebra

This is true for n > 0, so it is true for n > 1.

8:3

