Asymptotic Complexity

EECS 214

October 28, 2015

Finding things in an array

```
int find_in_unsorted_array(int needle, int* haystack, int size)
{
    for (int i = 0; i < size; ++i) {
        if (needle == haystack[i]) return i;
    }
    return -1;
}</pre>
```

Finding things in an array

```
int find_in_unsorted_array(int needle, int* haystack, int size)
{
    for (int i = 0; i < size; ++i) {
        if (needle == haystack[i]) return i;
    }
    return -1;
}</pre>
```

In the worst case, how long does this take?

Finding things in an array

```
int find_in_unsorted_array(int needle, int* haystack, int size)
{
    for (int i = 0; i < size; ++i) {
        if (needle == haystack[i]) return i;
    }
    return -1;
}</pre>
```

In the worst case, how long does this take? size iterations

Finding things in a sorted array

```
bool find in sorted array(int needle, int* haystack, int size)
{
    int start = 0, limit = size;
    while (start < limit) {</pre>
        int mid = (start + limit) / 2:
        if (needle < haystack[mid]) limit = mid;</pre>
        else if (needle > haystack[mid]) start = mid + 1
        else return mid;
    }
    return false;
}
```

Finding things in a sorted array

```
bool find in sorted array(int needle, int* haystack, int size)
{
    int start = 0, limit = size;
    while (start < limit) {</pre>
        int mid = (start + limit) / 2:
        if (needle < haystack[mid]) limit = mid;</pre>
        else if (needle > haystack[mid]) start = mid + 1
        else return mid;
    }
    return false;
}
```

In the worst case, how long does this take?

# of divs.	size remaining
1	500,000

# of divs.	size remaining
1	500,000
2	250,000

# of divs.	size remaining
1	500,000
2	250,000
3	125,000

# of divs.	size remaining
1	500,000
2	250,000
3	125,000
4	$62,\!500$

# of divs.	size remaining
1	500,000
2	250,000
3	125,000
4	$62,\!500$
5	31,250

# of divs.	size remaining
1	500,000
2	250,000
3	125,000
4	62,500
5	$31,\!250$
6	$15,\!675$

# of divs.	size remaining
1	500,000
2	250,000
3	125,000
4	$62,\!500$
5	$31,\!250$
6	15,675
7	7,837

# of divs.	size remaining
1	500,000
2	250,000
3	125,000
4	$62,\!500$
5	$31,\!250$
6	15,675
7	7,837
8	3,918

# of divs.	size remaining
1	500,000
2	250,000
3	125,000
4	$62,\!500$
5	$31,\!250$
6	15,675
7	7,837
8	3,918
9	1,959

# of divs.	size remaining
1	500,000
2	250,000
3	125,000
4	$62,\!500$
5	$31,\!250$
6	15,675
7	7,837
8	3,918
9	1,959
10	980

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000		
3	125,000		
4	$62,\!500$		
5	$31,\!250$		
6	$15,\!675$		
7	7,837		
8	3,918		
9	1,959		
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000		
4	$62,\!500$		
5	$31,\!250$		
6	$15,\!675$		
7	7,837		
8	3,918		
9	1,959		
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	$62,\!500$		•
5	$31,\!250$		
6	$15,\!675$		
7	7,837		
8	3,918		
9	1,959		
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	$62,\!500$	14	62
5	$31,\!250$		•
6	$15,\!675$		
7	7,837		
8	3,918		
9	1,959		
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	$62,\!500$	14	62
5	$31,\!250$	15	32
6	$15,\!675$		
7	7,837		
8	3,918		
9	1,959		
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	62,500	14	62
5	31,250	15	32
6	15,675	16	16
7	7,837		
8	3,918		
9	1,959		
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	62,500	14	62
5	31,250	15	32
6	15,675	16	16
7	7,837	17	8
8	3,918		
9	1,959		
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	62,500	14	62
5	31,250	15	32
6	15,675	16	16
7	7,837	17	8
8	3,918	18	4
9	1,959		•
10	980		

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	$62,\!500$	14	62
5	$31,\!250$	15	32
6	$15,\!675$	16	16
7	7,837	17	8
8	3,918	18	4
9	1,959	19	2
10	980		•

# of divs.	size remaining	# of divs.	size remaining
1	500,000	11	490
2	250,000	12	245
3	125,000	13	123
4	62,500	14	62
5	$31,\!250$	15	32
6	15,675	16	16
7	7,837	17	8
8	3,918	18	4
9	1,959	19	2
10	980	20	1

How many times can we divide an array of size n in half?

Time to search array

Linear search	Binary search
c_1n+c_2	$d_1\log n + d_2$

Definition of big O

Let $f : \mathbb{R} \to \mathbb{R}$. Then we define the set of functions $\mathcal{O}(f)$ as follows:

A function $g \in \mathcal{O}(f)$ *iff* there are some *m* and *c* such that for all n > m,

 $g(n) \leq cf(n)$.

Definition of big O

Let $f : \mathbb{R} \to \mathbb{R}$. Then we define the set of functions $\mathcal{O}(f)$ as follows:

A function $g \in \mathcal{O}(f)$ *iff* there are some m and c such that for all n > m,

 $g(n) \leq cf(n)$.

Intuitively:

- *m* means that we care about large inputs and can ignore small inputs up to some size.
- *c* is a constant factor, since we don't care about differences of a constant factor (since that just corresponds to making a computer faster)

Big O definition example

Let's show that $d_1\log n\in \mathcal{O}(c_1n).$

Big O definition example

Let's show that $d_1\log n\in \mathcal{O}(c_1n).$ Choose $c=rac{d_1}{c_1}$ and m=1. (These are guesses.)

Big O definition example

Let's show that $d_1 \log n \in \mathcal{O}(c_1 n)$. Choose $c = \frac{d_1}{c_1}$ and m = 1. (These are guesses.) To show:

$$d_1\log n \leq rac{d_1}{c_1}(c_1n) \qquad \qquad ext{for } n>1 \ \log n \leq n \qquad \qquad ext{by algebra}$$

This is true for n > 0, so it is true for n > 1.