Q.A. engineer walks into a
bar. Orders a beer. Orders
0 beers. Orders 999999999
beers. Orders a lizard.
Orders -1 beers. Orders a

sfdeljknesv.

1:1



Abstract Data Types

EECS 214
November 2, 2015



So you want a FIFO queue, do you?

What’s a FIFO?

3:1



So you want a FIFO queue, do you?
What’s a FIFO? Well, it has some operations:

e empty() : FifoQ
o empty?(FifoQ) : B

3:2



So you want a FIFO queue, do you?

What’s a FIFO? Well, it has some operations:
e empty() : FifoQ
o empty?(FifoQ) : B
e enqueue(Element, FifoQ)

e dequeue(FifoQ) : Element

3:3



So you want a FIFO queue, do you?

What’s a FIFO? Well, it has some operations:
e empty() : FifoQ
o empty?(FifoQ) : B
e enqueue(Element, FifoQ)

e dequeue(FifoQ) : Element

And it has some behavior, e.g.:

o empty?(empty()) =T

3:4



So you want a FIFO queue, do you?

What’s a FIFO? Well, it has some operations:
e empty() : FifoQ
o empty?(FifoQ) : B
e enqueue(Element, FifoQ)

e dequeue(FifoQ) : Element

And it has some behavior, e.g.:

o empty?(empty()) =T
e enqueue(e,q);empty?(q) = L

3:5



So you want a FIFO queue, do you?

What’s a FIFO? Well, it has some operations:
e empty() : FifoQ
o empty?(FifoQ) : B
e enqueue(Element, FifoQ)

e dequeue(FifoQ) : Element

And it has some behavior, e.g.:

o empty?(empty()) =T
e enqueue(e,q);empty?(q) = L

e q + empty()

3:6



So you want a FIFO queue, do you?

What’s a FIFO? Well, it has some operations:
e empty() : FifoQ
o empty?(FifoQ) : B
e enqueue(Element, FifoQ)

e dequeue(FifoQ) : Element

And it has some behavior, e.g.:
o empty?(empty()) =T
e enqueue(e,q);empty?(q) = L

e g < empty()
enqueue(a,q);enqueue(b,q)

3:7



So you want a FIFO queue, do you?

What’s a FIFO? Well, it has some operations:
e empty() : FifoQ
o empty?(FifoQ) : B
e enqueue(Element, FifoQ)

e dequeue(FifoQ) : Element

And it has some behavior, e.g.:
o empty?(empty()) =T
e enqueue(e,q);empty?(q) = L

e q + empty()
enqueue(a,q);enqueue(b,q)
a’ < dequeue(q); b’ + dequeue(q)

3:8



So you want a FIFO queue, do you?

What’s a FIFO? Well, it has some operations:
e empty() : FifoQ
o empty?(FifoQ) : B
e enqueue(Element, FifoQ)

e dequeue(FifoQ) : Element

And it has some behavior, e.g.:
o empty?(empty()) =T
e enqueue(e,q);empty?(q) = L
e q < empty()
enqueue(a,q);enqueue(b,q)
a’ < dequeue(q); b’ + dequeue(q)
a'=aANb =bArempty?(q) =T

3:9



But what is it?

It doesn’t matter.

4:1



HOW CAN IT NOT MATTER?

5:1



Let’s use one and see

—adt.rkt -

6:1



ADTSs can have multiple implementations

Like you saw on the exam! Two possible FIFO
implementations:

e linked list
e ring buffer

7:1



Linked list FIFO

(define-struct list-fifo-cell [first rest])
(define-struct list-fifo [front back])

; A ListFifolList is one of:
; — ')
; (make-list—-fifo-cell Element ListFifolist)

r A ListFifo is

; (make-list-fifo

; ListFifolList

; (make-list-fifo-cell Element '()))

; where either

; — both fields are '(), or

; — the “back' is the last cell of front'

8:1



Ring buffer FIFO

(define-struct ring-fifo [front back elements])

A RingFifo is
(make-ring-fifo N N [Vector-of Element])

; where “front' and ‘back' are valid indices
; for ‘elements', and one of:

; — front = back means it's empty

; — front < back means the FIFO comprises

; elements [front, back)

; — front > back means the FIFO comprises

; elements [front, size) then [0, back)

9:1



