





Take-aways

What is a priority queue is all about?
How is the heap property defined?
What does a binary heap look like?
How do its operations work?

What are their time complexities?
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The priority queue ADT

Empty() : PrioQ
Empty?(PrioQ) : Bool
Insert(PrioQ, Element)
FindMin(PrioQ) : Element
RemoveMin(PrioQ)

Note:
An Element has a key; keys are totally ordered
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The priority queue ADT

representation | linked
operation list
Empty() : PrioQ o(1)
Empty?(PrioQ) : Bool o(1)
Insert(PrioQ, Element) 01)
FindMin(PrioQ) : Element | O(n)
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Notes:
1. An Element has a key; keys are totally ordered

2. n is the number of elements
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The priority queue ADT

representation | linked sorted
operation list array
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The priority queue ADT

representation | linked sorted ring
operation list buffer
Empty() : PrioQ o(1) o(1)
Empty?(PrioQ) : Bool o(1) o(1)
Insert(PrioQ, Element) 0) O(n)
FindMin(PrioQ) : Element | O(n) 01)
RemoveMin(PrioQ) O(n) o(1)

Notes:
1. An Element has a key; keys are totally ordered

2. n is the number of elements
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We can do better

A heap is a tree that
satisfies the heap property
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We can do better

A heap is a tree that
satisfies the heap property:
every element’s key is less than
all of its descendants’ keys
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We can do better

A min-heap is a tree that
satisfies the min-heap property:
every element’s key is less than

all of its descendants’ keys
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We can do better

A max-heap is a tree that
satisfies the max-heap property:
every element’s key is greater than
all of its descendants’ keys
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Heaps versus search trees

min-heap property:

for all nodes n,
* n.key < n.left.key, and
* n.key < n.right.key

BST property:

for all nodes n,
e for all of n’s left-descendants ¢,
L.key < n.key, and
e for all of n’s right-descendants r,
r.key > n.key

6:1



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
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Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:
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Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property
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This one is easy:
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Operation FindMin

This one is easy:




Operation Insert
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Operation Insert

This one’s a bit harder. Let’s insert 11 into the heap.
Step 1: Add it at the end of the heap

10:2



Operation Insert

This one’s a bit harder. Let’s insert 11 into the heap.

Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved
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Operation Insert

This one’s a bit harder. Let’s insert 11 into the heap.

Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved

It is, so we’re done! Why is the local check sufficient?
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Operation Insert

Okay, let’s try inserting 9 instead.
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Operation Insert

Okay, let’s try inserting 9 instead.
The local invariant is broken! How can we fix it?
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Operation Insert

Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
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Operation Insert

Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
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Operation Insert

Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
Now we check 9’s new parent. Looks good.
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Operation Insert

Okay, now let’s insert 2.
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Operation Insert

Okay, now let’s insert 2.
Check the local invariant.
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Operation Insert

Okay, now let’s insert 2.
Check the local invariant. It’s broken!
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Okay, now let’s insert 2.
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So swap with the parent. Still broken!
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Operation Insert

Okay, now let’s insert 2.

Check the local invariant. It’s broken!

So swap with the parent. Still broken!

So “bubble up” until the invariant is restored.
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Operation Insert

When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)
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Operation Insert

When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

Before swap, node < parent, but also parent < other child (by

heap condition). Transitivity of < tells us that node < other
child!

How long does this take?
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Operation Insert

When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

Before swap, node < parent, but also parent < other child (by

heap condition). Transitivity of < tells us that node < other
child!

How long does this take? How tall is the tree? O (log n)
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Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.
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Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take? How tall is the tree? O (log n)




Take-aways

What is a priority queue is all about?
How is the heap property defined?
What does a binary heap look like?
How do its operations work?

What are their time complexities?
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