

Take-aways

What is a priority queue is all about?
How is the heap property defined?
What does a binary heap look like?
How do its operations work?

What are their time complexities?

3:1

The priority queue ADT

Empty() : PrioQ
Empty?(PrioQ) : Bool
Insert(PrioQ, Element)
FindMin(PrioQ) : Element
RemoveMin(PrioQ)

Note:
An Element has a key; keys are totally ordered

4:1

The priority queue ADT

representation | linked
operation list
Empty() : PrioQ o(1)
Empty?(PrioQ) : Bool o(1)
Insert(PrioQ, Element) 01)
FindMin(PrioQ) : Element | O(n)
RemoveMin(PrioQ) O(n)

Notes:
1. An Element has a key; keys are totally ordered

2. n is the number of elements

4:2

The priority queue ADT

representation | linked sorted
operation list array
Empty() : PrioQ o1 01
Empty?(PrioQ) : Bool ol 01
Insert(PrioQ, Element) O1) O(n)
FindMin(PrioQ) : Element | O(n) O(1)
RemoveMin(PrioQ) O(n) O(n)

Notes:

1. An Element has a key; keys are totally ordered

2. n is the number of elements

4:3

The priority queue ADT

representation | linked sorted
operation list array
Empty() : PrioQ o1 01
Empty?(PrioQ) : Bool ol 01
Insert(PrioQ, Element) O1) O(n)
FindMin(PrioQ) : Element | O(n) O(1)
RemoveMin(PrioQ) O(n) O(n)

Notes:

1. An Element has a key; keys are totally ordered

2. n is the number of elements

4:4

The priority queue ADT

representation | linked sorted ring
operation list buffer
Empty() : PrioQ o(1) o(1)
Empty?(PrioQ) : Bool o(1) o(1)
Insert(PrioQ, Element) 0) O(n)
FindMin(PrioQ) : Element | O(n) 01)
RemoveMin(PrioQ) O(n) o(1)

Notes:
1. An Element has a key; keys are totally ordered

2. n is the number of elements

4:5

We can do better

A heap is a tree that
satisfies the heap property

5:1

We can do better

A heap is a tree that
satisfies the heap property:
every element’s key is less than
all of its descendants’ keys

5:2

We can do better

A min-heap is a tree that
satisfies the min-heap property:
every element’s key is less than

all of its descendants’ keys

5:3

We can do better

A max-heap is a tree that
satisfies the max-heap property:
every element’s key is greater than
all of its descendants’ keys

5:4

Heaps versus search trees

min-heap property:

for all nodes n,
* n.key < n.left.key, and
* n.key < n.right.key

BST property:

for all nodes n,
e for all of n’s left-descendants ¢,
L.key < n.key, and
e for all of n’s right-descendants r,
r.key > n.key

6:1

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right

7:1

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:
@

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right

Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right

Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:16

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

8:1

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

®

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:

Operation FindMin

This one is easy:

Operation FindMin

This one is easy:

Operation FindMin

This one is easy:

How long does this take?

9:3

Operation FindMin

This one is easy:

Operation Insert

This one’s a bit harder. Let’s insert 11 into the heap.

Operation Insert

This one’s a bit harder. Let’s insert 11 into the heap.
Step 1: Add it at the end of the heap

10:2

Operation Insert

This one’s a bit harder. Let’s insert 11 into the heap.

Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved

10:3

Operation Insert

This one’s a bit harder. Let’s insert 11 into the heap.

Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved

It is, so we’re done! Why is the local check sufficient?

10:4

Operation Insert

Okay, let’s try inserting 9 instead.

10:5

Operation Insert

Okay, let’s try inserting 9 instead.
The local invariant is broken! How can we fix it?

10:6

Operation Insert

Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.

10:7

Operation Insert

Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
Now we check 9’s new parent.

10:8

Operation Insert

Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
Now we check 9’s new parent. Looks good.

10:9

Operation Insert

Okay, now let’s insert 2.

10:10

Operation Insert

Okay, now let’s insert 2.
Check the local invariant.

10:11

Operation Insert

Okay, now let’s insert 2.
Check the local invariant. It’s broken!

10:12

Operation Insert

Okay, now let’s insert 2.

Check the local invariant. It’s broken!
So swap with the parent. Still broken!

10:13

Operation Insert

Okay, now let’s insert 2.

Check the local invariant. It’s broken!

So swap with the parent. Still broken!

So “bubble up” until the invariant is restored.

10:14

Operation Insert

Okay, now let’s insert 2.

Check the local invariant. It’s broken!

So swap with the parent. Still broken!

So “bubble up” until the invariant is restored.

10:15

Operation Insert

When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

10:16

Operation Insert

When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

Before swap, node < parent, but also parent < other child (by

heap condition). Transitivity of < tells us that node < other
child!

How long does this take?

10:17

Operation Insert

When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

Before swap, node < parent, but also parent < other child (by

heap condition). Transitivity of < tells us that node < other
child!

How long does this take? How tall is the tree?
10:18

Operation Insert

When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

Before swap, node < parent, but also parent < other child (by

heap condition). Transitivity of < tells us that node < other
child!

How long does this take? How tall is the tree? O (log n)
10:19

Operation RemoveMin

Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node.

Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)

Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

Operation RemoveMin

Why do we swap with the smaller child?

Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take?

Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take? How tall is the tree?

Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take? How tall is the tree? O (log n)

Take-aways

What is a priority queue is all about?
How is the heap property defined?
What does a binary heap look like?
How do its operations work?

What are their time complexities?

12:1

