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Take-aways

• What is a priority queue is all about?
• How is the heap property defined?
• What does a binary heap look like?
• How do its operations work?
• What are their time complexities?
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The priority queue ADT

representation linked

sorted

operation list

array

Empty() : PrioQ

O(1) O(1)

Empty?(PrioQ) : Bool

O(1) O(1)

Insert(PrioQ,Element)

O(1) O(n)

FindMin(PrioQ) : Element

O(n) O(1)

RemoveMin(PrioQ)

O(n) O(n)

Note:

1.

An Element has a key; keys are totally ordered

2. n is the number of elements
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The priority queue ADT

representation linked sorted ring
operation list buffer
Empty() : PrioQ O(1) O(1)
Empty?(PrioQ) : Bool O(1) O(1)
Insert(PrioQ,Element) O(1) O(n)
FindMin(PrioQ) : Element O(n) O(1)
RemoveMin(PrioQ) O(n) O(1)

Notes:
1. An Element has a key; keys are totally ordered
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We can do better

A heap is a tree that
satisfies the heap property

:
every element’s key is less than

all of its descendants’ keys
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We can do better

A min-heap is a tree that
satisfies the min-heap property:
every element’s key is less than

all of its descendants’ keys
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We can do better

A max-heap is a tree that
satisfies the max-heap property:

every element’s key is greater than
all of its descendants’ keys
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Heaps versus search trees

min-heap property:
for all nodes n,

• n.key < n. left.key, and
• n.key < n. right.key

BST property:
for all nodes n,

• for all of n’s left-descendants ℓ,
ℓ. key < n.key, and

• for all of n’s right-descendants r,
r.key > n.key
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Definition: complete tree

A tree is complete if the levels are all filled in left-to-right

Like this:
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Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45 87 62
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Operation FindMin

This one is easy:

3

5 8

17 6 10 60

20 37 44 14 12

How long does this take?

O(1)
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This one is easy:
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Operation Insert
This one’s a bit harder. Let’s insert 11 into the heap.

Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved
It is, so we’re done! Why is the local check sufficient?

3

5 8

17 6 10 60

20 37 44 14 12

How long does this take?

How tall is the tree? O(log n)
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Operation Insert
Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
Now we check 9’s new parent.

Looks good.
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How long does this take?

How tall is the tree? O(log n)
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Operation Insert
Okay, now let’s insert 2.

Check the local invariant.

It’s broken!

So swap with the parent. Still broken!
So “bubble up” until the invariant is restored.
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How long does this take?

How tall is the tree? O(log n)
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Operation Insert
When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

Before swap, node < parent, but also parent < other child (by
heap condition). Transitivity of < tells us that node < other
child!
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Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node.

(This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.
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Operation RemoveMin

Why do we swap with the smaller child?

Transitivity again!

How long does this take?

How tall is the tree? O(log n)
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