


Heaps
EECS 214

November 4, 2015



Take-aways

• What is a priority queue is all about?
• How is the heap property defined?
• What does a binary heap look like?
• How do its operations work?
• What are their time complexities?

3:1



The priority queue ADT

representation linked

sorted

operation list

array

Empty() : PrioQ

O(1) O(1)

Empty?(PrioQ) : Bool

O(1) O(1)

Insert(PrioQ,Element)

O(1) O(n)

FindMin(PrioQ) : Element

O(n) O(1)

RemoveMin(PrioQ)

O(n) O(n)

Note:

1.

An Element has a key; keys are totally ordered

2. n is the number of elements

4:1



The priority queue ADT

representation linked

sorted

operation list

array

Empty() : PrioQ O(1)

O(1)

Empty?(PrioQ) : Bool O(1)

O(1)

Insert(PrioQ,Element) O(1)

O(n)

FindMin(PrioQ) : Element O(n)

O(1)

RemoveMin(PrioQ) O(n)

O(n)

Notes:
1. An Element has a key; keys are totally ordered
2. n is the number of elements

4:2



The priority queue ADT

representation linked sorted
operation list array
Empty() : PrioQ O(1) O(1)
Empty?(PrioQ) : Bool O(1) O(1)
Insert(PrioQ,Element) O(1) O(n)
FindMin(PrioQ) : Element O(n) O(1)
RemoveMin(PrioQ) O(n) O(n)

Notes:
1. An Element has a key; keys are totally ordered
2. n is the number of elements

4:3



The priority queue ADT

representation linked sorted
operation list array
Empty() : PrioQ O(1) O(1)
Empty?(PrioQ) : Bool O(1) O(1)
Insert(PrioQ,Element) O(1) O(n)
FindMin(PrioQ) : Element O(n) O(1)
RemoveMin(PrioQ) O(n) O(n)

Notes:
1. An Element has a key; keys are totally ordered
2. n is the number of elements

4:4



The priority queue ADT

representation linked sorted ring
operation list buffer
Empty() : PrioQ O(1) O(1)
Empty?(PrioQ) : Bool O(1) O(1)
Insert(PrioQ,Element) O(1) O(n)
FindMin(PrioQ) : Element O(n) O(1)
RemoveMin(PrioQ) O(n) O(1)

Notes:
1. An Element has a key; keys are totally ordered
2. n is the number of elements

4:5



We can do better

A heap is a tree that
satisfies the heap property

:
every element’s key is less than

all of its descendants’ keys

5:1



We can do better

A heap is a tree that
satisfies the heap property:

every element’s key is less than
all of its descendants’ keys

5:2



We can do better

A min-heap is a tree that
satisfies the min-heap property:
every element’s key is less than

all of its descendants’ keys

5:3



We can do better

A max-heap is a tree that
satisfies the max-heap property:

every element’s key is greater than
all of its descendants’ keys

5:4



Heaps versus search trees

min-heap property:
for all nodes n,

• n.key < n. left.key, and
• n.key < n. right.key

BST property:
for all nodes n,

• for all of n’s left-descendants ℓ,
ℓ. key < n.key, and

• for all of n’s right-descendants r,
r.key > n.key

6:1



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right

Like this:

7:1



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:2



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:3



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:4



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:5



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:6



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:7



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:8



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:9



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:10



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:11



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:12



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:13



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:14



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:15



Definition: complete tree

A tree is complete if the levels are all filled in left-to-right
Like this:

7:16



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45 87 62

8:1



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45 87 62

8:2



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5

8

17 6 9 60

20 37 44 7 12 45 87 62

8:3



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45 87 62

8:4



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17

6 9 60

20 37 44 7 12 45 87 62

8:5



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6

9 60

20 37 44 7 12 45 87 62

8:6



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9

60

20 37 44 7 12 45 87 62

8:7



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45 87 62

8:8



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20

37 44 7 12 45 87 62

8:9



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37

44 7 12 45 87 62

8:10



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44

7 12 45 87 62

8:11



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7

12 45 87 62

8:12



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12

45 87 62

8:13



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45

87 62

8:14



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45 87

62

8:15



Definition: binary heap

A binary heap is a complete binary tree
satisfying the heap property

Like this:
3

5 8

17 6 9 60

20 37 44 7 12 45 87 62

8:16



Operation FindMin

This one is easy:

3

5 8

17 6 10 60

20 37 44 14 12

How long does this take?

O(1)

9:1



Operation FindMin

This one is easy:

3

5 8

17 6 10 60

20 37 44 14 12

How long does this take?

O(1)

9:2



Operation FindMin

This one is easy:

3

5 8

17 6 10 60

20 37 44 14 12

How long does this take?

O(1)

9:3



Operation FindMin

This one is easy:

3

5 8

17 6 10 60

20 37 44 14 12

How long does this take? O(1)
9:4



Operation Insert
This one’s a bit harder. Let’s insert 11 into the heap.

Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved
It is, so we’re done! Why is the local check sufficient?

3

5 8

17 6 10 60

20 37 44 14 12

How long does this take?

How tall is the tree? O(log n)

10:1



Operation Insert
This one’s a bit harder. Let’s insert 11 into the heap.
Step 1: Add it at the end of the heap

Step 2: Check if the heap condition is (locally!) preserved
It is, so we’re done! Why is the local check sufficient?

3

5 8

17 6 10 60

20 37 44 14 12 11

How long does this take?

How tall is the tree? O(log n)

10:2



Operation Insert
This one’s a bit harder. Let’s insert 11 into the heap.
Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved

It is, so we’re done! Why is the local check sufficient?

3

5 8

17 6 10 60

20 37 44 14 12 11

<

How long does this take?

How tall is the tree? O(log n)

10:3



Operation Insert
This one’s a bit harder. Let’s insert 11 into the heap.
Step 1: Add it at the end of the heap
Step 2: Check if the heap condition is (locally!) preserved
It is, so we’re done! Why is the local check sufficient?

3

5 8

17 6 10 60

20 37 44 14 12 11

<

How long does this take?

How tall is the tree? O(log n)

10:4



Operation Insert
Okay, let’s try inserting 9 instead.

The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
Now we check 9’s new parent.

Looks good.

3

5 8

17 6 10 60

20 37 44 14 12 9

How long does this take?

How tall is the tree? O(log n)

10:5



Operation Insert
Okay, let’s try inserting 9 instead.
The local invariant is broken! How can we fix it?

Swap the troublesome node with its parent.
Now we check 9’s new parent.

Looks good.

3

5 8

17 6 10 60

20 37 44 14 12 9

>

How long does this take?

How tall is the tree? O(log n)

10:6



Operation Insert
Okay, let’s try inserting 9 instead.
The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.

Now we check 9’s new parent.

Looks good.

3

5 8

17 6 9 60

20 37 44 14 12 10

<

How long does this take?

How tall is the tree? O(log n)

10:7



Operation Insert
Okay, let’s try inserting 9 instead.
The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
Now we check 9’s new parent.

Looks good.

3

5 8

17 6 9 60

20 37 44 14 12 10

<

How long does this take?

How tall is the tree? O(log n)

10:8



Operation Insert
Okay, let’s try inserting 9 instead.
The local invariant is broken! How can we fix it?
Swap the troublesome node with its parent.
Now we check 9’s new parent. Looks good.

3

5 8

17 6 9 60

20 37 44 14 12 10

<

>

How long does this take?

How tall is the tree? O(log n)

10:9



Operation Insert
Okay, now let’s insert 2.

Check the local invariant.

It’s broken!

So swap with the parent. Still broken!
So “bubble up” until the invariant is restored.

3

5 8

17 6 9 60

20 37 44 14 12 10

How long does this take?

How tall is the tree? O(log n)

10:10



Operation Insert
Okay, now let’s insert 2.
Check the local invariant.

It’s broken!
So swap with the parent. Still broken!
So “bubble up” until the invariant is restored.

3

5 8

17 6 9 60

20 37 44 14 12 10 2

How long does this take?

How tall is the tree? O(log n)

10:11



Operation Insert
Okay, now let’s insert 2.
Check the local invariant. It’s broken!

So swap with the parent. Still broken!
So “bubble up” until the invariant is restored.

3

5 8

17 6 9 60

20 37 44 14 12 10 2

<

How long does this take?

How tall is the tree? O(log n)

10:12



Operation Insert
Okay, now let’s insert 2.
Check the local invariant. It’s broken!
So swap with the parent. Still broken!

So “bubble up” until the invariant is restored.

3

5 8

17 6 9 2

20 37 44 14 12 10 60

>

>

How long does this take?

How tall is the tree? O(log n)

10:13



Operation Insert
Okay, now let’s insert 2.
Check the local invariant. It’s broken!
So swap with the parent. Still broken!
So “bubble up” until the invariant is restored.

3

5 2

17 6 9 8

20 37 44 14 12 10 60

>

<

>

How long does this take?

How tall is the tree? O(log n)

10:14



Operation Insert
Okay, now let’s insert 2.
Check the local invariant. It’s broken!
So swap with the parent. Still broken!
So “bubble up” until the invariant is restored.

2

5 3

17 6 9 8

20 37 44 14 12 10 60

>

<

<

How long does this take?

How tall is the tree? O(log n)

10:15



Operation Insert
When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)

Before swap, node < parent, but also parent < other child (by
heap condition). Transitivity of < tells us that node < other
child!

2

5 3

17 6 9 8

20 37 44 14 12 10 60

?

How long does this take?

How tall is the tree? O(log n)

10:16



Operation Insert
When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)
Before swap, node < parent, but also parent < other child (by
heap condition). Transitivity of < tells us that node < other
child!

2

5 3

17 6 9 8

20 37 44 14 12 10 60

How long does this take?

How tall is the tree? O(log n)

10:17



Operation Insert
When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)
Before swap, node < parent, but also parent < other child (by
heap condition). Transitivity of < tells us that node < other
child!

2

5 3

17 6 9 8

20 37 44 14 12 10 60

How long does this take? How tall is the tree?

O(log n)

10:18



Operation Insert
When bubbling up, why didn’t we compare the node against
its other child? (E.g.: comparing 2 to 5)
Before swap, node < parent, but also parent < other child (by
heap condition). Transitivity of < tells us that node < other
child!

2

5 3

17 6 9 8

20 37 44 14 12 10 60

How long does this take? How tall is the tree? O(log n)
10:19



Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node.

(This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

2

5 3

17 6 9 8

20 37 44 14 12 10 60

11:1



Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node.

(This preserves tree completeness.)
Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

2

5 3

17 6 9 8

20 37 44 14 12 10 60

11:2



Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)

Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

60

5 3

17 6 9 8

20 37 44 14 12 10

11:3



Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)
Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

60

5 3

17 6 9 8

20 37 44 14 12 10

11:4



Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)
Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

60

5 3

17 6 9 8

20 37 44 14 12 10

>

11:5



Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)
Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

3

5 60

17 6 9 8

20 37 44 14 12 10

<

>

11:6



Operation RemoveMin

Step 1: Replace the root with the last node, and remove the
last node. (This preserves tree completeness.)
Step 2: Restore the invariant by “percolating down”: swap new
node with its smaller child until invariant is restored.

3

5 8

17 6 9 60

20 37 44 14 12 10

<

<

11:7



Operation RemoveMin

Why do we swap with the smaller child?

Transitivity again!

How long does this take?

How tall is the tree? O(log n)

3

5 8

17 6 9 60

20 37 44 14 12 10

<

<

11:8



Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take?

How tall is the tree? O(log n)

3

5 8

17 6 9 60

20 37 44 14 12 10

11:9



Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take?

How tall is the tree? O(log n)

3

5 8

17 6 9 60

20 37 44 14 12 10

11:10



Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take? How tall is the tree?

O(log n)

3

5 8

17 6 9 60

20 37 44 14 12 10

11:11



Operation RemoveMin

Why do we swap with the smaller child? Transitivity again!

How long does this take? How tall is the tree? O(log n)

3

5 8

17 6 9 60

20 37 44 14 12 10

11:12



Take-aways

• What is a priority queue is all about?
• How is the heap property defined?
• What does a binary heap look like?
• How do its operations work?
• What are their time complexities?

12:1


