
Self-Balancing BSTs
EECS 214

November 6, 2015



Take-aways

• What is the BST property?
• How do BST lookup, insertion, and deletion work?
• Why does balance matter?

2:1



A basic binary tree

A binary tree, describing structure but not content:
; An [BinTree X] is one of:
; -- (leaf)
; -- (branch [BinTree X] X [BinTree X])
(define-struct leaf [])
(define-struct branch [left element right])

3:1



The BST property

To be a BST, a binary search tree needs to be ordered:
; [BST Integer] -> Boolean
(define (int-bst? tree)

(int-bst-within? -INF.0 tree +INF.0))

; Number IntBST Number -> Boolean
(define (within? min tree max)

(or
(leaf? tree)
(and
(< min (element tree) max)
(within? min (left tree) (element tree))
(within? (element tree) (right tree) max))]))

4:1



Two helpful definitions

; An [Ord X] is a function [X X -> Boolean]
; Invariant: must be a total order on Xs

; A [Maybe X] is one of:
; -- X
; -- #false

5:1



Two helpful definitions

; An [Ord X] is a function [X X -> Boolean]
; Invariant: must be a total order on Xs

; A [Maybe X] is one of:
; -- X
; -- #false

5:2



Binary search

The BST property enables binary search:
; [Ord X] X [BST X] -> [Maybe X]
(define (lookup lt? needle haystack)

(cond
[(leaf? haystack) #false]
[(lt? needle (element haystack))
(lookup lt? needle (left haystack))]

[(lt? (element haystack) needle)
(lookup lt? needle (right haystack))]
[else
(element haystack)]))

6:1



Insertion is similar

; [Ord X] X [BST X] -> [BST X]
(define (insert lt? new tree)

(cond
[(leaf? tree) (make-branch LEAF new LEAF)]
[(lt? new (element tree))
(make-branch (insert lt? new (left tree))

(element tree)
(right tree))]

[(lt? (element tree) new)
(make-branch (left tree)

(element tree)
(insert lt? new (right tree)))]

[else
(make-branch (left tree) new (right tree))]))

7:1



Binary search is O(log n), right?

Start with the empty tree.

Insert 1. Insert 2. Insert 3. Insert
4. Insert 5. Insert 6. Insert 7. Insert 8.

8:1



Binary search is O(log n), right?

Start with the empty tree. Insert 1.

Insert 2. Insert 3. Insert
4. Insert 5. Insert 6. Insert 7. Insert 8.

1

8:2



Binary search is O(log n), right?

Start with the empty tree. Insert 1. Insert 2.

Insert 3. Insert
4. Insert 5. Insert 6. Insert 7. Insert 8.

1
2

8:3



Binary search is O(log n), right?

Start with the empty tree. Insert 1. Insert 2. Insert 3.

Insert
4. Insert 5. Insert 6. Insert 7. Insert 8.

1
2

3

8:4



Binary search is O(log n), right?

Start with the empty tree. Insert 1. Insert 2. Insert 3. Insert
4.

Insert 5. Insert 6. Insert 7. Insert 8.

1
2

3
4

8:5



Binary search is O(log n), right?

Start with the empty tree. Insert 1. Insert 2. Insert 3. Insert
4. Insert 5.

Insert 6. Insert 7. Insert 8.

1
2

3
4

5

8:6



Binary search is O(log n), right?

Start with the empty tree. Insert 1. Insert 2. Insert 3. Insert
4. Insert 5. Insert 6.

Insert 7. Insert 8.

1
2

3
4

5
6

8:7



Binary search is O(log n), right?

Start with the empty tree. Insert 1. Insert 2. Insert 3. Insert
4. Insert 5. Insert 6. Insert 7.

Insert 8.

1
2

3
4

5
6

7

8:8



Binary search is O(log n), right?

Start with the empty tree. Insert 1. Insert 2. Insert 3. Insert
4. Insert 5. Insert 6. Insert 7. Insert 8.

1
2

3
4

5
6

7
8

8:9



We need some balance!

There are a variety of self-balancing trees:
• Red-black trees
• Splay trees
• 2-3 trees
• 2-4 trees
• B trees
• and so on...

9:1



The AVL property

An AVL tree is height balanced: For every node, the heights
of its left and right subtrees can differ by at most 1

We keep the balance in each node:
; An [AVLTree X] is one of:
; -- (leaf)
; -- (branch Balance [AVLTree X] X [AVLTree X])
; where Balance is the integer interval [-1, 1]
;
; Invariant: for all nodes n,
; (= (balance n)
; (- (height (right n)) (height (left n))))
(define-struct leaf [])
(define-struct branch [balance left element right])

10:1



The AVL property

An AVL tree is height balanced: For every node, the heights
of its left and right subtrees can differ by at most 1
We keep the balance in each node:
; An [AVLTree X] is one of:
; -- (leaf)
; -- (branch Balance [AVLTree X] X [AVLTree X])
; where Balance is the integer interval [-1, 1]
;
; Invariant: for all nodes n,
; (= (balance n)
; (- (height (right n)) (height (left n))))
(define-struct leaf [])
(define-struct branch [balance left element right])

10:2



Big theme!

Local properties induce global properties.

11:1



Take-aways

• What is the BST property?
• How do BST lookup, insertion, and deletion work?
• Why does balance matter?

12:1


