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Take-aways

• What is the AVL property?
• How does AVL tree insertion maintain the property?
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A basic binary tree

A binary tree, describing structure but not content:
; An [BinTree X] is one of:
; -- (leaf)
; -- (branch [BinTree X] X [BinTree X])
(define-struct leaf [])
(define-struct branch [left element right])

; A [BST X] is a [BinTree X]
; that satisfies the BST property
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Problem!

Binary search is O(log n), right?

1

2
3

4
5

6
7

8

Only if the tree is (sufficiently) balanced.
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Solution

We need some balance.

There is a variety of self-balancing trees…
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Red-black trees

Main idea: Every node has an extra bit marking it “red” or
“black”

Local invariant: No red node has red children

Global invariant: Equal number of black nodes from root
to every leaf
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2-3 trees

Main idea: 2-nodes have one element and two children;
3-nodes have two elements and three children

Local invariant: All subtrees of a node have the same
height

Global invariant: Every leaf is at the same depth
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2-4 trees

Main idea: Like 2-3 trees, but also has 4-nodes with three
elements and four children.

Local invariant: All subtrees of a node have the same
height

Global invariant: Every leaf is at the same depth
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B-trees

Main idea: Generalization of 2-4 trees to 2-k trees

Local invariant: Like 2-4 trees, but allow some number of
missing subtrees

Global invariant: Every leaf is at the same depth
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Splay trees

Main idea: Cache recently access elements near the root of
the tree

Local invariant: Need amortized analysis to talk about this

Global invariant: Paths are very likely to be O(log n)
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AVL trees

Main idea: Maintain a balance factor giving the difference
between each node’s subtrees’ heights

Local invariant: Balance factor is at most 1

Global invariant: Tree is approximately height-balanced
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Big theme!

We can ensure a global property by
maintaining a local property
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AVL tree data definition

Each branch includes a balance factor of type B:
(define-struct leaf [])
(define-struct branch [balance left element right])

; A [PreAVLTree B X] is one of:
; -- (make-leaf)
; -- (make-branch B [PreAVLTree B X]
; X [PreAVLTree B X])
; satisfying the BST property

; An [AVLTree X] is [PreAVLTree [-1, 1] X]
; satisfying the AVL property as well
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Defining the AVL property

The AVL property relies on balance factors, so it requires
that balance factors be accurate.

See function accurate-balances? in avl.rkt.

Then we require that every balance factor be -1, 0, or 1.
See function avl-balances? in avl.rkt.

; avl? : [PreAVLTree Integer X] -> Boolean
; Is the tree actually an AVL tree?
(define (avl? tree)
(and (bst? tree)

(accurate-balances? tree)
(avl-balances? tree)))
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Maintaining the AVL property

Suppose we have an AVL tree:

B
0

A C
(Convention: triangles represent equal-height subtrees.)

Right now the balance factor is 0. So if we insert into A or C
and that subtree grows in height, it becomes -1 or 1.
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Maintaining the AVL property
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Right now the balance factor at B is 1.
Suppose we insert into A. What happens to B’s balance factor?

• If no change in A’s height, then B’s balance doesn’t
change

• If A’s height increases, then B’s balance is now 0
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Maintaining the AVL property
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Right now the balance factor at B is 1.
Likewise, suppose we insert into E. What happens to B’s bal-
ance factor?

• If no change, then B’s balance doesn’t change
• If increase, then B’s balance becomes 2—not okay!
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Right-right case

If the height the right-right subtree (formerly E) increases,
we get a situation like this:
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Right-left case

If the height the right-right subtree (formerly C) increases,
we get a situation like this:

B
2

A F
-1

GD
0

C E

This is just the right-right case, which we know how to
handle.
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