
AVL1 Trees
EECS 214

November 9, 2015

1Georgy Adelson-Velsky and Evgenii Landis



Take-aways

• What is the AVL property?
• How does AVL tree insertion maintain the property?

2:1



A basic binary tree

A binary tree, describing structure but not content:
; An [BinTree X] is one of:
; -- (leaf)
; -- (branch [BinTree X] X [BinTree X])
(define-struct leaf [])
(define-struct branch [left element right])

; A [BST X] is a [BinTree X]
; that satisfies the BST property

3:1



Problem!

Binary search is O(log n), right?

1

2
3

4
5

6
7

8

Only if the tree is (sufficiently) balanced.

4:1



Problem!

Binary search is O(log n), right?

1
2

3
4

5
6

7
8

Only if the tree is (sufficiently) balanced.

4:2



Problem!

Binary search is O(log n), right?

1
2

3

4
5

6
7

8

Only if the tree is (sufficiently) balanced.

4:3



Problem!

Binary search is O(log n), right?

1
2

3
4

5
6

7
8

Only if the tree is (sufficiently) balanced.

4:4



Problem!

Binary search is O(log n), right?

1
2

3
4

5

6
7

8

Only if the tree is (sufficiently) balanced.

4:5



Problem!

Binary search is O(log n), right?

1
2

3
4

5
6

7
8

Only if the tree is (sufficiently) balanced.

4:6



Problem!

Binary search is O(log n), right?

1
2

3
4

5
6

7

8

Only if the tree is (sufficiently) balanced.

4:7



Problem!

Binary search is O(log n), right?

1
2

3
4

5
6

7
8

Only if the tree is (sufficiently) balanced.

4:8



Problem!

Binary search is O(log n), right?

1
2

3
4

5
6

7
8

Only if the tree is (sufficiently) balanced.

4:9



Solution

We need some balance.

There is a variety of self-balancing trees…

5:1



Solution

We need some balance.

There is a variety of self-balancing trees…

5:2



Red-black trees

Main idea: Every node has an extra bit marking it “red” or
“black”

Local invariant: No red node has red children

Global invariant: Equal number of black nodes from root
to every leaf

6:1



2-3 trees

Main idea: 2-nodes have one element and two children;
3-nodes have two elements and three children

Local invariant: All subtrees of a node have the same
height

Global invariant: Every leaf is at the same depth

7:1



2-4 trees

Main idea: Like 2-3 trees, but also has 4-nodes with three
elements and four children.

Local invariant: All subtrees of a node have the same
height

Global invariant: Every leaf is at the same depth

8:1



B-trees

Main idea: Generalization of 2-4 trees to 2-k trees

Local invariant: Like 2-4 trees, but allow some number of
missing subtrees

Global invariant: Every leaf is at the same depth

9:1



Splay trees

Main idea: Cache recently access elements near the root of
the tree

Local invariant: Need amortized analysis to talk about this

Global invariant: Paths are very likely to be O(log n)

10:1



AVL trees

Main idea: Maintain a balance factor giving the difference
between each node’s subtrees’ heights

Local invariant: Balance factor is at most 1

Global invariant: Tree is approximately height-balanced

11:1



Big theme!

We can ensure a global property by
maintaining a local property

12:1



AVL tree data definition

Each branch includes a balance factor of type B:
(define-struct leaf [])
(define-struct branch [balance left element right])

; A [PreAVLTree B X] is one of:
; -- (make-leaf)
; -- (make-branch B [PreAVLTree B X]
; X [PreAVLTree B X])
; satisfying the BST property

; An [AVLTree X] is [PreAVLTree [-1, 1] X]
; satisfying the AVL property as well

13:1



Defining the AVL property

The AVL property relies on balance factors, so it requires
that balance factors be accurate.

See function accurate-balances? in avl.rkt.

Then we require that every balance factor be -1, 0, or 1.
See function avl-balances? in avl.rkt.

; avl? : [PreAVLTree Integer X] -> Boolean
; Is the tree actually an AVL tree?
(define (avl? tree)
(and (bst? tree)

(accurate-balances? tree)
(avl-balances? tree)))

14:1



Maintaining the AVL property

Suppose we have an AVL tree:

B
0

A C
(Convention: triangles represent equal-height subtrees.)

Right now the balance factor is 0. So if we insert into A or C
and that subtree grows in height, it becomes -1 or 1.

15:1



Maintaining the AVL property

Suppose we have an AVL tree:

B
0

A C
(Convention: triangles represent equal-height subtrees.)

Right now the balance factor is 0. So if we insert into A or C
and that subtree grows in height, it becomes -1 or 1.

15:2



Maintaining the AVL property

B
1

A
D
0

C E

Right now the balance factor at B is 1.
Suppose we insert into A. What happens to B’s balance factor?

• If no change in A’s height, then B’s balance doesn’t
change

• If A’s height increases, then B’s balance is now 0

16:1



Maintaining the AVL property

B
1

A
D
0

C E

Right now the balance factor at B is 1.
Suppose we insert into A. What happens to B’s balance factor?

• If no change in A’s height, then B’s balance doesn’t
change

• If A’s height increases, then B’s balance is now 0
16:2



Maintaining the AVL property

B
1

A
D
0

C E

Right now the balance factor at B is 1.
Suppose we insert into C. What happens to B’s balance factor?

• If no change, then B’s balance doesn’t change
• If increase, then B’s balance becomes 2

—not okay!

16:3



Maintaining the AVL property

B
1

A
D
0

C E

Right now the balance factor at B is 1.
Suppose we insert into C. What happens to B’s balance factor?

• If no change, then B’s balance doesn’t change
• If increase, then B’s balance becomes 2

—not okay!

16:4



Maintaining the AVL property

B
1

A
D
0

C E

Right now the balance factor at B is 1.
Suppose we insert into C. What happens to B’s balance factor?

• If no change, then B’s balance doesn’t change
• If increase, then B’s balance becomes 2—not okay!

16:5



Maintaining the AVL property

B
1

A
D
0

C E

Right now the balance factor at B is 1.
Likewise, suppose we insert into E. What happens to B’s bal-
ance factor?

• If no change, then B’s balance doesn’t change
• If increase, then B’s balance becomes 2—not okay!

16:6



Right-right case

If the height the right-right subtree (formerly E) increases,
we get a situation like this:

B
2

A D
1

C F
0

E G

=⇒ D
0

B
0

F
0

A C E G

17:1



Right-right case

If the height the right-right subtree (formerly E) increases,
we get a situation like this:

B
2

A D
1

C F
0

E G

=⇒ D
0

B
0

F
0

A C E G

17:2



Right-left case

If the height the right-right subtree (formerly C) increases,
we get a situation like this:

B
2

A F
-1

GD
0

C E

This is just the right-right case, which we know how to
handle.

18:1



Right-left case

If the height the right-right subtree (formerly C) increases,
we get a situation like this:

B
2

A F
-1

GD
0

C E

=⇒ B
2

A D
1

C F
0

E G

This is just the right-right case, which we know how to
handle.

18:2



Right-left case

If the height the right-right subtree (formerly C) increases,
we get a situation like this:

B
2

A F
-1

GD
0

C E

=⇒ B
2

A D
1

C F
0

E G

This is just the right-right case, which we know how to
handle.

18:3



Take-aways

• What is the AVL property?
• How does AVL tree insertion maintain the property?

19:1


