
Amortized Analysis
EECS 214

November 11–13, 2015

Take-aways

• What is amortized time?
• How does amortized time differ from average time?
• When is amortized time useful, and when might we

want to avoid it?
• How can we figure out the amortized time of data

structure operations?
• How does a dynamic array achieve its amortized time

complexity?

2:1

Example: dynamic arrays

Language Type
C++ std::vector
Java ArrayList
Python list
Ruby Array

C you’re on your own
ASL you’re on your own

3:1

Example: dynamic arrays

Language Type
C++ std::vector
Java ArrayList
Python list
Ruby Array
C you’re on your own

ASL you’re on your own

3:2

Example: dynamic arrays

Language Type
C++ std::vector
Java ArrayList
Python list
Ruby Array
C you’re on your own
ASL you’re on your own

3:3

Iteratively growing a dynamic array

std::vector<int> v;
for (int i = 0; i < N; ++i) v.push_back(i);

ArrayList<Integer> v = new ArrayList<>();
for (int i = 0; i < N; ++i) v.add(i);

v = list()
for i in range(0, 10): v.append(i)

v = Array.new
for i in 0 ... N do v.push(i) end

4:1

Time per operation

5:1

Accumulated time

6:1

What’s it doing?

• A dynamic array is backed by a fixed-size array with
excess capacity:
(define-struct dynarray [data size])

• When the array fills, allocate a fixed-size array that’s
twice as big and copy over the elements.

7:1

Time complexity of a single insertion

A single insertion:

Tinsert(n) = O(n)

8:1

Time complexity of a sequence of insertions

Hence, for a sequence of insertions:

Tinsert−sequence(m) =

m∑
i=1

O(i)

= O

(m∑
i=1

i
)

= O(1 + 2 + · · ·+ (m − 1) + m)

= O
(

m(m + 1)
2

)
= O(m2)

9:1

Time complexity of a sequence of insertions

Hence, for a sequence of insertions:

Tinsert−sequence(m) =

m∑
i=1

O(i)

= O

(m∑
i=1

i
)

= O(1 + 2 + · · ·+ (m − 1) + m)

= O
(

m(m + 1)
2

)
= O(m2)

9:2

Time complexity of a sequence of insertions

Hence, for a sequence of insertions:

Tinsert−sequence(m) =

m∑
i=1

O(i)

= O

(m∑
i=1

i
)

= O(1 + 2 + · · ·+ (m − 1) + m)

= O
(

m(m + 1)
2

)
= O(m2)

9:3

Time complexity of a sequence of insertions

Hence, for a sequence of insertions:

Tinsert−sequence(m) =

m∑
i=1

O(i)

= O

(m∑
i=1

i
)

= O(1 + 2 + · · ·+ (m − 1) + m)

= O
(

m(m + 1)
2

)

= O(m2)

9:4

Time complexity of a sequence of insertions

Hence, for a sequence of insertions:

Tinsert−sequence(m) =

m∑
i=1

O(i)

= O

(m∑
i=1

i
)

= O(1 + 2 + · · ·+ (m − 1) + m)

= O
(

m(m + 1)
2

)
= O(m2)

9:5

Amortized time complexity

Amortized time complexity considers the cost of a sequence
of operations by paying attention to the state of the data

structure.

Then it apportions the time evenly among the operations.

Amortization is about the worst case, not merely the average
case.

10:1

Amortized time complexity

Amortized time complexity considers the cost of a sequence
of operations by paying attention to the state of the data

structure.

Then it apportions the time evenly among the operations.

Amortization is about the worst case, not merely the average
case.

10:2

Amortized time complexity

Amortized time complexity considers the cost of a sequence
of operations by paying attention to the state of the data

structure.

Then it apportions the time evenly among the operations.

Amortization is about the worst case, not merely the average
case.

10:3

Banker’s method: real costs vs. accounting
costs

Let ci be the actual cost of the ith operation
Let c′i be the charged cost of the ith operation

—we choose
this!

If total actual cost does not exceed the total charged cost,
n∑

i=1
ci ≤

n∑
i=1

c′i ,

then we say that the ith operation has worst-case amortized
time O(c′i),

11:1

Banker’s method: real costs vs. accounting
costs

Let ci be the actual cost of the ith operation
Let c′i be the charged cost of the ith operation—we choose
this!

If total actual cost does not exceed the total charged cost,
n∑

i=1
ci ≤

n∑
i=1

c′i ,

then we say that the ith operation has worst-case amortized
time O(c′i),

11:2

Banker’s method: real costs vs. accounting
costs

Let ci be the actual cost of the ith operation
Let c′i be the charged cost of the ith operation—we choose
this!

If total actual cost does not exceed the total charged cost,
n∑

i=1
ci ≤

n∑
i=1

c′i ,

then we say that the ith operation has worst-case amortized
time O(c′i),

11:3

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10

capi 1 2 4 4 8 8 8 8 16 16
ci 1 2 3 1 5 1 1 1 9 1
c′i 1 1 1 1 1 1 1 1 1 1

bali 0 −1 −1 −1 −1 −1 −1 . . .

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:1

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
c′i 1 1 1 1 1 1 1 1 1 1

bali 0 −1 −1 −1 −1 −1 −1 . . .

Let capi be the capacity after operation i

Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:2

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1

c′i 1 1 1 1 1 1 1 1 1 1
bali 0 −1 −1 −1 −1 −1 −1 . . .

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)

Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:3

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
c′i 1 1 1 1 1 1 1 1 1 1

bali 0 −1 −1 −1 −1 −1 −1 . . .

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations

Let bali be the balance: bali = bali−1 − ci + c′i.

12:4

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
c′i 1 1 1 1 1 1 1 1 1 1

bali 0 −1 −1 −1 −1 −1 −1 . . .

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:5

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
c′i 2 2 2 2 2 2 2 2 2 2

bali 1 1 0 1 −1 −1 0 1 −1 −1

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:6

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
c′i 3 3 3 3 3 3 3 3 3 3

bali 2 3 3 5 3 5 7 9 3 5

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:7

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 2 4 7 1 13 1 1 1 25 1
c′i 3 3 3 3 3 3 3 3 3 3

bali 1 0 −1 −1 . . .

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:8

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 2 4 7 1 13 1 1 1 25 1
c′i 5 5 5 5 5 5 5 5 5 5

bali 3 4 2 6 −2 . . .

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:9

Amortized time for dynamic array insertion
(banker style)

Consider the ith insert operation (which results in size i):

i 1 2 3 4 5 6 7 8 9 10
capi 1 2 4 4 8 8 8 8 16 16

ci 2 4 7 1 13 1 1 1 25 1
c′i 7 7 7 7 7 7 7 7 7 7

bali 5 8 8 14 8 14 20 26 8 14

Let capi be the capacity after operation i
Let ci be the actual cost of the ith operation (number of
elements inserted or copied)
Let c′i be the charged cost of the ith operation—we choose a
constant to cover the cost of large future operations
Let bali be the balance: bali = bali−1 − ci + c′i.

12:10

Physicist’s method: potential “energy”

We define a potential function Φ on data structure states,
where:

Φ(v0) = 0 starts at 0
Φ(vt) ≥ 0 never goes negative

Φ is akin to the balance in the banker’s method, but
history-less

We then define the amortized time of an operation:

c′i = ci + Φ(vi)− Φ(vi−1)

= ci + ΔΦ(vi)

13:1

Physicist’s method: potential “energy”

We define a potential function Φ on data structure states,
where:

Φ(v0) = 0 starts at 0
Φ(vt) ≥ 0 never goes negative

Φ is akin to the balance in the banker’s method, but
history-less

We then define the amortized time of an operation:

c′i = ci + Φ(vi)− Φ(vi−1)

= ci + ΔΦ(vi)

13:2

Physicist’s method: potential “energy”

We define a potential function Φ on data structure states,
where:

Φ(v0) = 0 starts at 0
Φ(vt) ≥ 0 never goes negative

Φ is akin to the balance in the banker’s method, but
history-less

We then define the amortized time of an operation:

c′i = ci + Φ(vi)− Φ(vi−1)

= ci + ΔΦ(vi)

13:3

Physicist’s method: potential “energy”

We define a potential function Φ on data structure states,
where:

Φ(v0) = 0 starts at 0
Φ(vt) ≥ 0 never goes negative

Φ is akin to the balance in the banker’s method, but
history-less

We then define the amortized time of an operation:

c′i = ci + Φ(vi)− Φ(vi−1)

= ci + ΔΦ(vi)

13:4

Potential function for dynamic arrays

We choose a potential function

Φ(v) = 2n − m ,

where n is the size and m the capacity of v.

Let’s check Φ’s properties:
✓ The initial vector has no size and no capacity, so

Φ(v0) = 0

✓

The capacity is never more than twice the size, because
we double when it’s full; hence 2n ≥ m; hence
Φ(v) = 2n − m ≥ 0.

14:1

Potential function for dynamic arrays

We choose a potential function

Φ(v) = 2n − m ,

where n is the size and m the capacity of v.

Let’s check Φ’s properties:

✓ The initial vector has no size and no capacity, so
Φ(v0) = 0

✓

The capacity is never more than twice the size, because
we double when it’s full; hence 2n ≥ m; hence
Φ(v) = 2n − m ≥ 0.

14:2

Potential function for dynamic arrays

We choose a potential function

Φ(v) = 2n − m ,

where n is the size and m the capacity of v.

Let’s check Φ’s properties:
✓ The initial vector has no size and no capacity, so

Φ(v0) = 0

✓

The capacity is never more than twice the size, because
we double when it’s full; hence 2n ≥ m; hence
Φ(v) = 2n − m ≥ 0.

14:3

Potential function for dynamic arrays

We choose a potential function

Φ(v) = 2n − m ,

where n is the size and m the capacity of v.

Let’s check Φ’s properties:
✓ The initial vector has no size and no capacity, so

Φ(v0) = 0

✓

The capacity is never more than twice the size, because
we double when it’s full

; hence 2n ≥ m; hence
Φ(v) = 2n − m ≥ 0.

14:4

Potential function for dynamic arrays

We choose a potential function

Φ(v) = 2n − m ,

where n is the size and m the capacity of v.

Let’s check Φ’s properties:
✓ The initial vector has no size and no capacity, so

Φ(v0) = 0

✓

The capacity is never more than twice the size, because
we double when it’s full; hence 2n ≥ m

; hence
Φ(v) = 2n − m ≥ 0.

14:5

Potential function for dynamic arrays

We choose a potential function

Φ(v) = 2n − m ,

where n is the size and m the capacity of v.

Let’s check Φ’s properties:
✓ The initial vector has no size and no capacity, so

Φ(v0) = 0
✓ The capacity is never more than twice the size, because

we double when it’s full; hence 2n ≥ m; hence
Φ(v) = 2n − m ≥ 0.

14:6

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:

✓

If n < m then ci = 1.

So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓

If n = m then ci = n + 1 (copy plus simple insert).

So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m
= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:1

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:

✓

If n < m then ci = 1.

So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓

If n = m then ci = n + 1 (copy plus simple insert).

So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m
= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:2

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:

✓

If n < m then ci = 1. So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓

If n = m then ci = n + 1 (copy plus simple insert).

So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m
= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:3

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:
✓ If n < m then ci = 1. So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓

If n = m then ci = n + 1 (copy plus simple insert).

So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m
= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:4

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:
✓ If n < m then ci = 1. So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓

If n = m then ci = n + 1 (copy plus simple insert).

So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m
= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:5

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:
✓ If n < m then ci = 1. So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓

If n = m then ci = n + 1 (copy plus simple insert). So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m
= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:6

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:
✓ If n < m then ci = 1. So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓

If n = m then ci = n + 1 (copy plus simple insert). So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m

= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:7

Amortized time for dynamic array insertion
(physicist style)

Let’s compute c′i for insertion. Remember that
c′i = ci + Φ(vi)− Φ(vi−1). There are two possibilities:
✓ If n < m then ci = 1. So

c′i = 1 + (2(n + 1)− m)− (2n − m)

= 1 + 2 = 3

✓ If n = m then ci = n + 1 (copy plus simple insert). So

c′i = n + 1 + (2(n + 1)− 2m)− (2n − m)

= n + 1 + (2(n + 1)− 2n)− (2n − n) because n = m
= 1 + 2 + n + 2n − 2n + 2n − n = 3

15:8

Another example: (naïve) persistent banker’s
queue

A data structure is persistent when modifications do not
destroy the previous state of the structure.

(The opposite is
ephemeral.)

What if we want a persistent FIFO queue with sub-linear
operations?

16:1

Another example: (naïve) persistent banker’s
queue

A data structure is persistent when modifications do not
destroy the previous state of the structure.(The opposite is
ephemeral.)

What if we want a persistent FIFO queue with sub-linear
operations?

16:2

Another example: (naïve) persistent banker’s
queue

A data structure is persistent when modifications do not
destroy the previous state of the structure.(The opposite is
ephemeral.)

What if we want a persistent FIFO queue with sub-linear
operations?

16:3

Take-aways

• What is amortized time?
• How does amortized time differ from average time?
• When is amortized time useful, and when might we

want to avoid it?
• How can we figure out the amortized time of data

structure operations?
• How does a dynamic array achieve its amortized time

complexity?

17:1

