Amortized Analysis

EECS 214

November 11–13, 2015

Take-aways

- What is *amortized time*?
- How does amortized time differ from *average time*?
- When is amortized time useful, and when might we want to avoid it?
- How can we figure out the amortized time of data structure operations?
- How does a dynamic array achieve its amortized time complexity?

Example: dynamic arrays

Language	Туре
C++	<pre>std::vector</pre>
Java	ArrayList
Python	list
Ruby	Array

Example: dynamic arrays

Language	Туре
C++	<pre>std::vector</pre>
Java	ArrayList
Python	list
Ruby	Array
С	you're on your own

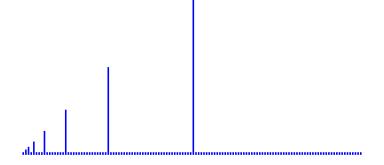
Example: dynamic arrays

Language	Туре
C++	<pre>std::vector</pre>
Java	ArrayList
Python	list
Ruby	Array
С	you're on your own
ASL	you're on your own

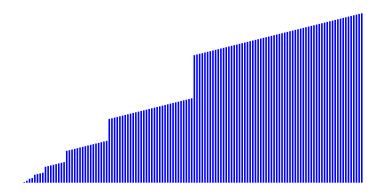
Iteratively growing a dynamic array

```
std::vector<int> v;
for (int i = 0; i < N; ++i) v.push back(i);</pre>
ArrayList<Integer> v = new ArrayList<>();
for (int i = 0; i < N; ++i) v.add(i):</pre>
v = list()
for i in range(0, 10): v.append(i)
v = Array_new
for i in 0 ... N do v.push(i) end
```

Time per operation



Accumulated time



What's it doing?

- A dynamic array is backed by a fixed-size array with excess capacity: (define-struct dynarray [data size])
- When the array fills, allocate a fixed-size array that's twice as big and copy over the elements.

Time complexity of a single insertion

A single insertion:

 $T_{ ext{insert}}(n) = \mathcal{O}(n)$

$$T_{ ext{insert-sequence}}(m) = \sum_{i=1}^m \mathcal{O}(i)$$

$$egin{aligned} T_{ ext{insert-sequence}}(m) &= \sum_{i=1}^m \mathcal{O}(i) \ &= \mathcal{O}\left(\sum_{i=1}^m i
ight) \end{aligned}$$

$$egin{aligned} T_{ ext{insert-sequence}}(m) &= \sum_{i=1}^m \mathcal{O}(i) \ &= \mathcal{O}\left(\sum_{i=1}^m i
ight) \ &= \mathcal{O}(1+2+\dots+(m-1)+m) \end{aligned}$$

$$egin{aligned} T_{ ext{insert-sequence}}(m) &= \sum_{i=1}^m \mathcal{O}(i) \ &= \mathcal{O}\left(\sum_{i=1}^m i
ight) \ &= \mathcal{O}(1+2+\dots+(m-1)+m) \ &= \mathcal{O}\left(rac{m(m+1)}{2}
ight) \end{aligned}$$

Hence, for a sequence of insertions:

$$egin{aligned} T_{ ext{insert-sequence}}(m) &= \sum_{i=1}^m \mathcal{O}(i) \ &= \mathcal{O}\left(\sum_{i=1}^m i
ight) \ &= \mathcal{O}(1+2+\dots+(m-1)+m) \ &= \mathcal{O}\left(rac{m(m+1)}{2}
ight) \ &= \mathcal{O}(m^2) \end{aligned}$$

Amortized time complexity

Amortized time complexity considers the cost of a sequence of operations by paying attention to the state of the data structure.

Amortized time complexity

Amortized time complexity considers the cost of a sequence of operations by paying attention to the state of the data structure.

Then it apportions the time evenly among the operations.

Amortized time complexity

Amortized time complexity considers the cost of a sequence of operations by paying attention to the state of the data structure.

Then it apportions the time evenly among the operations.

Amortization is about the *worst case*, not merely the *average* case.

Banker's method: real costs vs. accounting costs

Let c_i be the actual cost of the *i*th operation Let c'_i be the charged cost of the *i*th operation

Banker's method: real costs vs. accounting costs

Let c_i be the actual cost of the *i*th operation Let c'_i be the charged cost of the *i*th operation—we choose this!

Banker's method: real costs vs. accounting costs

Let c_i be the actual cost of the *i*th operation Let c'_i be the charged cost of the *i*th operation—we choose this!

If total actual cost does not exceed the total charged cost,

$$\sum_{i=1}^n c_i \leq \sum_{i=1}^n c_i'$$
,

then we say that the *i*th operation has worst-case *amortized* time $\mathcal{O}(c'_i)$,

Consider the *i*th insert operation (which results in size *i*):

 $i \mid 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

Consider the *i*th insert operation (which results in size *i*):

i										
cap_i	1	2	4	4	8	8	8	8	16	16

Let cap_i be the capacity after operation i

Consider the *i*th insert operation (which results in size *i*):

i	1	2	3	4	5	6	7	8	9	10
cap_i	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1

Let cap_i be the capacity after operation *i* Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Consider the *i*th insert operation (which results in size *i*):

i	1	2	3	4	5	6	7	8	9	10
cap_i	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1
	1									

Let cap_i be the capacity after operation i

Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Let c'_i be the charged cost of the *i*th operation—we choose a constant to cover the cost of large future operations

Consider the *i*th insert operation (which results in size *i*):

								8		
cap_i	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1
c'_i	1	1	1	1	1	1	1	1	1	1
$cap_i \\ c_i \\ c'_i \\ bal_i$	0	-1	-1	-1	-1	-1	-1			

Let cap_i be the capacity after operation i

Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Let c'_i be the charged cost of the *i*th operation—we choose a constant to cover the cost of large future operations Let bal_i be the balance: $bal_i = bal_{i-1} - c_i + c'_i$.

Consider the *i*th insert operation (which results in size *i*):

i	1	2	3	4	5	6	7	8	9	10
cap_i	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1
$c_i \\ c'_i$	2	2	2	2	2	2	2	2	2	2
bal_i	1	1	0	1	-1	-1	0	1	-1	-1

Let cap_i be the capacity after operation i

Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Let c'_i be the charged cost of the *i*th operation—we choose a constant to cover the cost of large future operations Let bal_i be the balance: $bal_i = bal_{i-1} - c_i + c'_i$.

Consider the *i*th insert operation (which results in size *i*):

i	1	2	3	4	5	6	7	8	9	10
$cap_i \\ c_i$	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1
c'_i	3	3	3	3	3	3	3	3	3	3
$c'_i \\ bal_i$	2	3	3	5	3	5	7	9	3	5

Let cap_i be the capacity after operation i

Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Let c'_i be the charged cost of the *i*th operation—we choose a constant to cover the cost of large future operations Let bal_i be the balance: $bal_i = bal_{i-1} - c_i + c'_i$.

Consider the *i*th insert operation (which results in size *i*):

	1									
$cap_i \\ c_i \\ c'_i$	1	2	4	4	8	8	8	8	16	16
c_i	2	4	7	1	13	1	1	1	25	1
c'_i	3	3	3	3	3	3	3	3	3	3
bal_i	1	0	-1	-1						

Let cap_i be the capacity after operation i

Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Let c'_i be the charged cost of the *i*th operation—we choose a constant to cover the cost of large future operations Let bal_i be the balance: $bal_i = bal_{i-1} - c_i + c'_i$.

Consider the *i*th insert operation (which results in size *i*):

i	1	2	3	4	5	6	7	8	9	10
$cap_i \\ c_i$	1	2	4	4	8	8	8	8	16	16
c_i	2	4	7	1	13	1	1	1	25	1
c'_i	5	5	5	5						
$c'_i \\ bal_i$	3	4	2	6	-2					

Let cap_i be the capacity after operation i

Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Let c'_i be the charged cost of the *i*th operation—we choose a constant to cover the cost of large future operations Let bal_i be the balance: $bal_i = bal_{i-1} - c_i + c'_i$.

Consider the *i*th insert operation (which results in size *i*):

	1									
$cap_i \\ c_i \\ c'_i$	1	2	4	4	8	8	8	8	16	16
c_i	2	4	7	1	13	1	1	1	25	1
c'_i	7	7	7	7	7	7	7	7	7	7
bal_i	5	8	8	14	8	14	20	26	8	14

Let cap_i be the capacity after operation i

Let c_i be the actual cost of the *i*th operation (number of elements inserted or copied)

Let c'_i be the charged cost of the *i*th operation—we choose a constant to cover the cost of large future operations Let bal_i be the balance: $bal_i = bal_{i-1} - c_i + c'_i$.

We define a potential function Φ on data structure states, where:

$$egin{aligned} \Phi(v_0) &= 0 & ext{starts at 0} \ \Phi(v_t) &\geq 0 & ext{never goes negative} \end{aligned}$$

We define a potential function Φ on data structure states, where:

 $egin{array}{ll} \Phi(v_0) = 0 & ext{starts at } 0 \ \Phi(v_t) \geq 0 & ext{never goes negative} \end{array}$

 $\boldsymbol{\Phi}$ is akin to the balance in the banker's method, but history-less

We define a potential function Φ on data structure states, where:

 $egin{array}{ll} \Phi(v_0) = 0 & ext{starts at } 0 \ \Phi(v_t) \geq 0 & ext{never goes negative} \end{array}$

 Φ is akin to the balance in the banker's method, but history-less

We then define the amortized time of an operation:

$$egin{aligned} c_i' &= c_i + \Phi(v_i) - \Phi(v_{i-1}) \ &= c_i + \Delta \Phi(v_i) \end{aligned}$$

We define a potential function Φ on data structure states, where:

 $egin{array}{ll} \Phi(v_0) = 0 & ext{starts at } 0 \ \Phi(v_t) \geq 0 & ext{never goes negative} \end{array}$

 Φ is akin to the balance in the banker's method, but history-less

We then define the amortized time of an operation:

$$egin{aligned} c_i' &= c_i + \Phi(v_i) - \Phi(v_{i-1}) \ &= c_i + \Delta \Phi(v_i) \end{aligned}$$

Potential function for dynamic arrays

We choose a potential function

$$\Phi(v)=2n-m\,,$$

where n is the size and m the capacity of v.

We choose a potential function

$$\Phi(v)=2n-m\,,$$

where n is the size and m the capacity of v.

Let's check Φ 's properties:

We choose a potential function

$$\Phi(v)=2n-m\,,$$

where n is the size and m the capacity of v.

Let's check Φ 's properties:

 $\checkmark~$ The initial vector has no size and no capacity, so $\Phi(v_0)=0$

We choose a potential function

$$\Phi(v)=2n-m\,,$$

where n is the size and m the capacity of v.

Let's check Φ 's properties:

 $\checkmark~$ The initial vector has no size and no capacity, so $\Phi(v_0)=0$

The capacity is never more than twice the size, because we double when it's full

We choose a potential function

$$\Phi(v)=2n-m\,,$$

where n is the size and m the capacity of v.

Let's check Φ 's properties:

 $\checkmark~$ The initial vector has no size and no capacity, so $\Phi(v_0)=0$

The capacity is never more than twice the size, because we double when it's full; hence $2n \ge m$

We choose a potential function

$$\Phi(v)=2n-m\,,$$

where n is the size and m the capacity of v.

Let's check Φ 's properties:

- $\checkmark~~$ The initial vector has no size and no capacity, so $\Phi(v_0)=0$
- ✓ The capacity is never more than twice the size, because we double when it's full; hence $2n \ge m$; hence $\Phi(v) = 2n - m \ge 0$.

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities:

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities: If n < m then $c_i = 1$.

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities: If n < m then $c_i = 1$. So

$$c_i' = 1 + (2(n+1) - m) - (2n - m)$$

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities: \checkmark If n < m then $c_i = 1$. So

$$egin{aligned} c_i' &= 1 + (2(n+1) - m) - (2n - m) \ &= 1 + 2 = 3 \end{aligned}$$

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities: \checkmark If n < m then $c_i = 1$. So

$$egin{aligned} c_i' &= 1 + (2(n+1) - m) - (2n - m) \ &= 1 + 2 = 3 \end{aligned}$$

If n = m then $c_i = n + 1$ (copy plus simple insert).

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities: \checkmark If n < m then $c_i = 1$. So

$$egin{aligned} c_i' &= 1 + (2(n+1) - m) - (2n - m) \ &= 1 + 2 = 3 \end{aligned}$$

If n = m then $c_i = n + 1$ (copy plus simple insert). So

$$c_i^\prime = n + 1 + (2(n+1) - 2m) - (2n - m)$$

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities: \checkmark If n < m then $c_i = 1$. So

$$egin{aligned} c_i' &= 1 + (2(n+1) - m) - (2n - m) \ &= 1 + 2 = 3 \end{aligned}$$

If n = m then $c_i = n + 1$ (copy plus simple insert). So

$$egin{aligned} c_i' &= n+1+(2(n+1)-2m)-(2n-m)\ &= n+1+(2(n+1)-2n)-(2n-n) \ & ext{ because } n=m \end{aligned}$$

Let's compute c'_i for insertion. Remember that $c'_i = c_i + \Phi(v_i) - \Phi(v_{i-1})$. There are two possibilities: \checkmark If n < m then $c_i = 1$. So

$$egin{aligned} c_i' &= 1 + (2(n+1) - m) - (2n - m) \ &= 1 + 2 = 3 \end{aligned}$$

✓ If n = m then $c_i = n + 1$ (copy plus simple insert). So

$$egin{aligned} & c_i' = n+1+(2(n+1)-2m)-(2n-m) \ & = n+1+(2(n+1)-2n)-(2n-n) \ & ext{ because } n=m \ & = 1+2+n+2n-2n+2n-n=3 \end{aligned}$$

Another example: (naïve) persistent banker's queue

A data structure is *persistent* when modifications do not destroy the previous state of the structure.

Another example: (naïve) persistent banker's queue

A data structure is *persistent* when modifications do not destroy the previous state of the structure.(The opposite is *ephemeral*.)

Another example: (naïve) persistent banker's queue

A data structure is *persistent* when modifications do not destroy the previous state of the structure.(The opposite is *ephemeral*.)

What if we want a persistent FIFO queue with sub-linear operations?

Take-aways

- What is *amortized time*?
- How does amortized time differ from *average time*?
- When is amortized time useful, and when might we want to avoid it?
- How can we figure out the amortized time of data structure operations?
- How does a dynamic array achieve its amortized time complexity?