Disjoint Sets

EECS 214
November 16, 2015

Take-aways

What does the union-find ADT do?
What might it be useful for?
What are some possible data structures for union-find?

How does the ranked, path-compressed forest union-find
data structure work?

Why is it efficient?

Following slides are from
https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf

2:1

18
11
s

!

t
11T

ol
]
8t

1}

r

T

i

—

i

1l

el

{

I‘I*‘IIH
| Gy

1

ous

T

!

]

111

T

IIrUI

Lo e

£ ifaF
L.
)

i

geles

ot

1]

I Lyt

> o

1H

gt
-
i

!

i

%_%

o

Déé_

oo

1

S
il

h*I

!

11

i

° 4

° o ¢

1

!
)

Tl

1

>4
-~

!

> 3 HI
»—4.—0—0I

>4
*~— 4
See

Sk

—

1

>4

Sleat
Buc.

-
Lo

I

!

1

WJH

lm»—o—c

1

)i

{H

e

po

o e

o

!
141

Lo

e find query: is there a path connecting one object to another?

e union command: connect two objects

Basic abstractions
e set of objects

Network connectivity

e
fyyd
?‘EIILILI !

f

IIHH

a8

-

>—T—Q

]

it

1o17]

T
sl

Ry
<

[el

!

¢—o

!

3

4

131

e

>
94
o9

!
!
I

!

Staalas

i

{

t

188

B
i
iefis

LI

-

~—e
v

o

i
7
LI'I

i

!

» e

Objects

Union-find applications involve manipulating objects of all types.
e Computers in a hetwork.

e Web pages on the Internet.
e Transistors in a computer chip.
e Variable name aliases.

tay tuned
e Pixels in a digital photo. 7 stay tune

e Metadllic sites in a composite system.

When programming, convenient to name them O to N-1, .
 Hide details not relevant to union-find. / i
e Integers allow quick access to object-related info.

e Could use symbol table to translate from object names

@ ® ® O,
@ ® O,

© 8

Union-find abstractions

Simple model captures the essential nature of connectivity.

Objects.

O 1 2 3 4 5 6 7 8 9 grid points

e Disjoint sets of objects.

0O 1 {239} {56} 7 {48} subsets of connected grid points

e Find query: are objects 2 and 9 in the same set?

O 1 {239} {56} 7 { 48} are two grid points connected?

e Union command: merge sets containing 3 and 8.

0 1 {23489} {56} 7 add a connection between
two grid points

Connected components
Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

-]

® &—06—=06

O—O—@

g N 0o b W
D W o © M

3 = 10-7 components —>

~N OO N O NN 0 b~ W
W O© © OO W O O b
ol

™

7 union commands

Network connectivity: larger example

=

.
BT
agd

]
o
1RO

R

l
l
o1l

hi

I *—
l
!
M B P |
o ol iy @ ey
o

*"—e

=1
ITs

11
4 ‘l{
I8

1T

.11

P 9 o

l

!

!
) o 1 e

£

I ~—e

!
ji'

g e Al
oy pld

L
I({H 9

!

!
|
.

:

%ﬁ#
I

1]

)

o

[L

63 components

-

"—eo 0

L
4 L

1
13
1s

"I_I
™

-‘IE‘

FI—I—i

-
._.I_<>_LH’_{
ity
rﬁﬂ
‘:111 5
st
i

ILL

Lo .
p—4

—e

1-4

 po

!

11

i
H: Rist
r Bt
I

88
—ad
& .

=
=

3
14
j
-

ppan

s T
L
L.

11

L
. .

:11*D‘FI_E—‘I—I—E1

EIHE

| S

11t

gerd

- "I‘[H:I

E - r
Y r_qHH

1

1 ? I —e oo

-HLIH*[E:HE
Hhstitstsiest
»I«::IH
Fﬁé’:mz
11
T

!
slplel =
i

g III q

11
o
ot 4 1y

I

)

2518

!

—o
—9
b—4

—9

!
!

H)
wdpa
=R eeiar
RH1 =

1

-~

L ’ 0—13

ot
r:5L

!

131 :
ot 1
AR L
Hi
1H

N 2
1

Network connectivity: larger example

true

L o

Union-find abstractions

Objects.
e Disjoint sets of objects.
e Find queries: are two objects in the same set?

e Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

e Find queries and union commands may be intfermixed.
e Number of operations M can be huge.

e Number of objects N can be huge.

10

Quick-find [eager approach]

Data structure.
e Integer arrayid[] of size N.
e Interpretation: p and q are connected if they have the same id.

0O 1 2 3 4 6 7 8 9 5 and 6 are connected
O 1 9 9 9 6 7 8 9

5
P d[1] 6 2,3,4,and 9 are connected

12

Quick-find [eager approach]

Data structure.
e Integer arrayid[] of size N.

e Interpretation: p and q are connected if they have the same id.

© w
IN
o
oo
~ ~
0
© ©

Find. Check if p and q have the same id.

Union. To merge components containing p and q,
change all entries with id[p] to id(q].

(O} \V]

3 4 5 6 7 8 9
6 6 6 6 7 8 6
A A /

problem: many values can change

5 and 6 are connected
2, 3,4, and 9 are connected

id[3]=9; id[6]=6
3 and 6 not connected

union of 3 and 6
2,3,4,5,6,and 9 are connected

13

Quick-find example

3-4

4-9

8-0

2-3

5-6

o= 9

=%

4-8

6-1

1111111111

T

problem: many values can change

jessnn

14

Quick-find is too slow

Quick-find algorithm may take ~MN steps
to process M union commands on N objects

Rough standard (for now).
107 operations per second.

e 10° words of main memory. / a truism (roughly) since 1950 !

e Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

 10'° edges connecting 10° nodes.

* Quick-find takes more than 10'° operations.
e 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
e New computer may be 10x as fast.

e But, has 10x as much memory so problem may be 10x bigger.

e With quadratic algorithm, takes 10x as long!

16

Quick-union [lazy approach]

Data structure.

e Integer arrayid[] of size N.

e Interpretation: id[i] is parent of i.
e Rootof i is idlid[id[...id[i]...]]].

/ keep going until it doesn't change

ORONO @ ®
ONO

3

3'srootis 9; 5's root is 6

18

Quick-union [lazy approach]

Data structure.
e Integer arrayid[] of size N.
o Interpretation: id[i] is parent of i.

keep going until it doesn't change
e Rootofi is idlidid[...id[i]...]11]. /

i 0 1 2 3 45 6 7 8 9 @ @ (9 @ (&
idli] o 1 9 4 9 6 6 7 8 9
2 @
Find. Check if p and q have the same rooft.
K]
3'srootis 9; 5's root is 6
. . ' . ‘ 3 and 5 are not connected
Union. Set the id of q's root to the id of p's root.
i 0 1 2 3 4 5 7 8 9 © @ () @
idli] o 1 9 4 9 6 7 8 9

T ® ® ®

only one value changes

19

Quick-union example

@@@%@@@@

3-4 012445617829 @@®§@®®
4-9 0124956789
8-0 01249567009
2-3 01949567009
5-6 01949667009
5-9 01949697009
7-3 01949699009
4-8 0194969900

6-1 1194969900

problem: frees can get tall

20

Quick-union is also too slow

Quick-find defect.
e Union too expensive (N steps).
e Trees are flat, but oo expensive to keep them flat.

Quick-union defect.

e Trees can gef tall.

e Find too expensive (could be N steps)
e Need to do find to do union

algorithm union find
Quick-find N 1
Quick-union N* N «<—— worst case

* includes cost of find

22

Improvement 1: Weighting

Weighted quick-union.

e Modify quick-union to avoid tall trees.

e Keep track of size of each component.

e Balance by linking small tree below large one.

Ex. Union of 5 and 3.
e Quick union: link 9 to 6.
e Weighted quick union: link 6 to 9.

size 2

@@ié
& &

3
q

P

24

Weighted quick-union example

3-4 01233567829
4-9 012 33
8-0 81233
2-3 81333
5-6 813 3 3
5-9 813 33
/-3 81333
4-8 813 3 3

6-1 8 3 333

ONONO)]

ONORGRONO)

25

Weighted quick-union: Java implementation

Java implementation.
e Almost identical to quick-union.

e Maintain extra array sz[] to count number of elements
in the free rooted at i.

Find. Identical fo quick-union.
Union. Modify quick-union to
e merge smaller tree into larger tree

e update the sz[] array.

if (sz[i] < sz[§]1) { id[i] = j; sz[j] += sz[i]; }
else { id[3j] = i; sz[i] += sz[]j]; }

26

Weighted quick-union analysis

Analysis.

e Find: takes time proportional to depth of p and q.

e Union: takes constant time, given roots.
e Fact: depth is at most Ig N. [needs proof]

Data Structure Union Find
Quick-find N 1
Quick-union N * N

Weighted QU Ig N * Ilg N

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

27

Improvement 2: Path compression

Path compression. Just after computing the root of i,

set the i d of each examined node to root (i).

r oot (9)

28

Weighted quick-union with path compression

Path compression.

e Standard implementation: add second loop to root () to set
the id of each examined node to the roof.

e Simpler one-pass variant: make every other node in path
point to its grandparent.

public int root(int i)

{
while (i '=id[i])

{

idfi] =idlid[i]]; only one extra line of code !
o= id[i];
}

return i;

In practice. No reason not to! Keeps tree almost completely flat.

29

Weighted quick-union with path compression

3-4 01233567829
®®®g@©®@

4-9 0123356783

@00 & ©®0006
8-0 8

2-3 8
5-6 8
5-9 8
7-3 8
4-8 8

6-1 8

30

WQUPC performance

Theorem. Starting from an empty data structure, any sequence
of M union and find operations on N objects takes O(N + M Ig* N) time.
e Proof is very difficult. |

° BUT The algom‘rhm IS ST'” S'mple! number of times needed to take
the Ig of a number until reaching 1

Linear algorithm?
e Cost within constant factor of reading in the data.

*
e In theory, WQUPC is not quite linear. 1\11 . ON
* Inpractice, WQUPCiis linear. | , .
T .
because Ig* N is a constant 16 3
in This universe 65536 4
265536 5

Amazing fact:
e In theory, no linear linking strategy exists

31

Summary

Algorithm Worst-case time
Quick-find M N
Quick-union M N

Weighted QU N+MlogN
Path compression N+MlogN
Weighted + path (M +N) Ig* N

M union-find ops on a set of N objects

Ex. Huge practical problem.
 10'° edges connecting 10° nodes.
e WQUPC reduces time from 3,000 years to 1 minute.

> SUPerCOmPUTer won't help much. WQUPC on Java cell phone beats QF on supercomputer!

e Good algorithm makes solution possible.

Bottom line.
WQUPC makes it possible to solve problems
that could not otherwise be addressed

32

Union-find applications

v Network connectivity.

e Percolation.

* Image processing.

e Least common ancestor.

e Equivalence of finite state automata.

e Hinley-Milner polymorphic type inference.
e Kruskal's minimum spanning tree algorithm.
e Games (6o, Hex)

e Compiling equivalence statements in Fortran.

34

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

e Two players alternate in picking a cell in a hex grid.

e Black: make a black path from upper left to lower right.
e White: make a white path from lower left fo upper right.

Reference: http://mathworld.wolfram.com/GameofHex.html

Union-find application. Algorithm to detect when a player has won.

39

