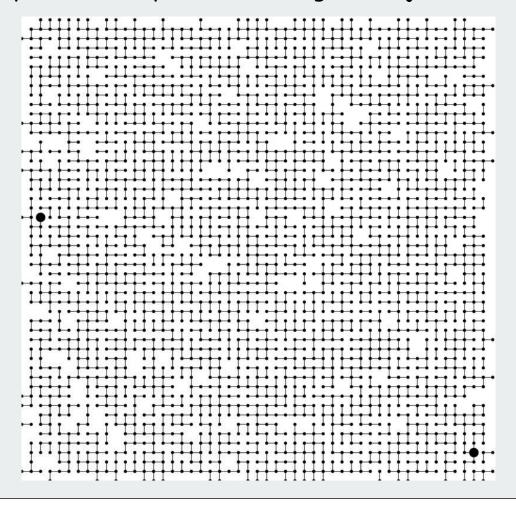
# Disjoint Sets

**EECS 214** 

November 16, 2015

#### Take-aways


- What does the union-find ADT do?
- What might it be useful for?
- What are some possible data structures for union-find?
- How does the ranked, path-compressed forest union-find data structure work?
- Why is it efficient?

Following slides are from https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf

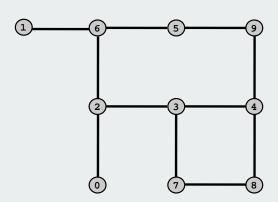
# Network connectivity

#### Basic abstractions

- set of objects
- union command: connect two objects
- find query: is there a path connecting one object to another?



#### Objects


#### Union-find applications involve manipulating objects of all types.

- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Variable name aliases.
- Pixels in a digital photo.
- Metallic sites in a composite system.



#### When programming, convenient to name them 0 to N-1.

- Hide details not relevant to union-find.
- Integers allow quick access to object-related info.
- Could use symbol table to translate from object names



use as array index

#### Union-find abstractions

Simple model captures the essential nature of connectivity.

• Objects.

0 1 2 3 4 5 6 7 8 9

grid points

• Disjoint sets of objects.

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

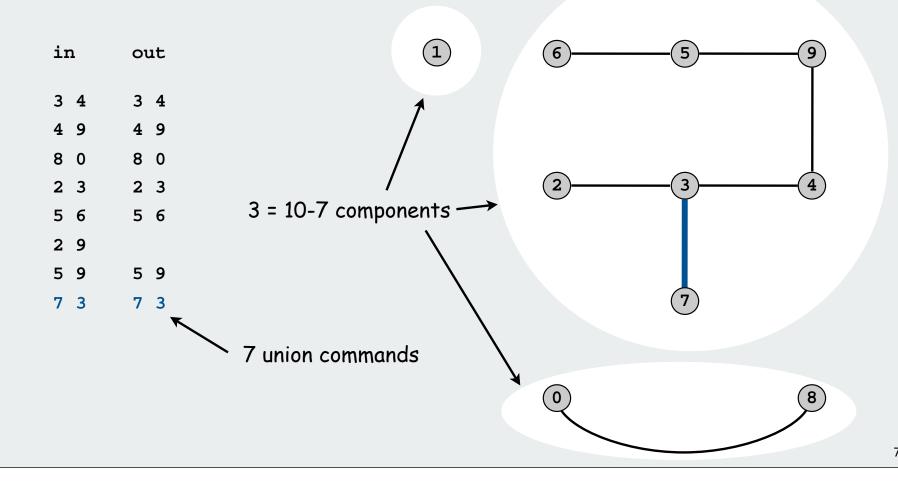
subsets of connected grid points

• Find query: are objects 2 and 9 in the same set?

0 1 { 2 3 9 } { 5-6 } 7 { 4-8 }

are two grid points connected?

• Union command: merge sets containing 3 and 8.


0 1 { 2 3 4 8 9 } { 5-6 } 7

add a connection between two grid points

# Connected components

#### Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components



# Network connectivity: larger example find(u, v) ?

# Network connectivity: larger example find(u, v) ? 63 components true 9

#### Union-find abstractions

- Objects.
- Disjoint sets of objects.
- Find queries: are two objects in the same set?
- Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

- Find queries and union commands may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.

# Quick-find [eager approach]

#### Data structure.

- Integer array ia[] of size N.
- Interpretation: p and q are connected if they have the same id.

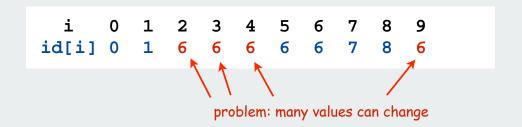
| i     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------|---|---|---|---|---|---|---|---|---|---|
| id[i] | _ |   |   | _ |   | _ | _ |   | _ | _ |

5 and 6 are connected 2, 3, 4, and 9 are connected

# Quick-find [eager approach]

#### Data structure.

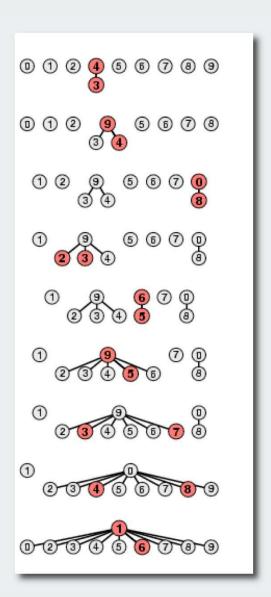
- Integer array ia[] of size N.
- Interpretation: p and q are connected if they have the same id.


| i                | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------------------|---|---|---|---|---|---|---|---|---|---|
| <pre>id[i]</pre> | 0 | 1 | 9 | 9 | 9 | 6 | 6 | 7 | 8 | 9 |

5 and 6 are connected 2, 3, 4, and 9 are connected

Find. Check if p and q have the same id.

id[3] = 9; id[6] = 6 3 and 6 not connected


Union. To merge components containing p and q, change all entries with id[p] to id[q].



union of 3 and 6 2, 3, 4, 5, 6, and 9 are connected

# Quick-find example

```
0 1 2 4 4 5 6 7 8 9
0 1 2 9 9 5 6 7 8 9
0 1 2 9 9 5 6 7 0 9
0 1 9 9 9 5 6 7 0 9
0 1 9 9 9 6 6 7 0 9
0 1 9 9 9 9 9 7 0 9
0 1 9 9 9 9 9 0 9
0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
 problem: many values can change
```



#### Quick-find is too slow

Quick-find algorithm may take ~MN steps to process M union commands on N objects

#### Rough standard (for now).

- 109 operations per second.
- 109 words of main memory.
- Touch all words in approximately 1 second.

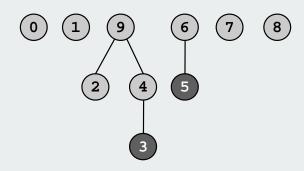
a truism (roughly) since 1950!

#### Ex. Huge problem for quick-find.

- 10<sup>10</sup> edges connecting 10<sup>9</sup> nodes.
- Quick-find takes more than  $10^{19}$  operations.
- 300+ years of computer time!

#### Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!


# Quick-union [lazy approach]

#### Data structure.

- Integer array ia[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

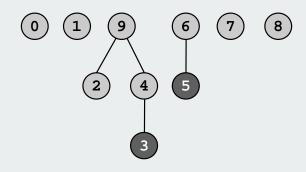
keep going until it doesn't change

i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 4 9 6 6 7 8 9



3's root is 9; 5's root is 6

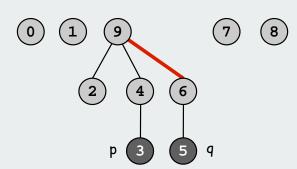
# Quick-union [lazy approach]


#### Data structure.

- Integer array ia[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

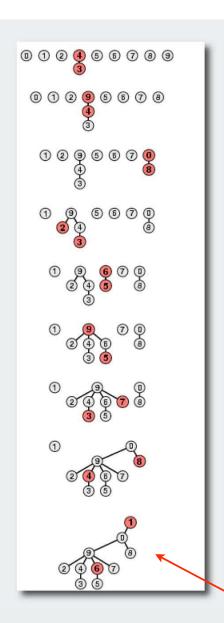
keep going until it doesn't change




Find. Check if p and q have the same root.



3's root is 9; 5's root is 6 3 and 5 are not connected


Union. Set the id of q's root to the id of p's root.





# Quick-union example

```
0 1 2 4 9 5 6 7 8 9
0 1 9 4 9 6 6 7 0 9
0 1 9 4 9 6 9 9 0 9
```



problem: trees can get tall

#### Quick-union is also too slow

#### Quick-find defect.

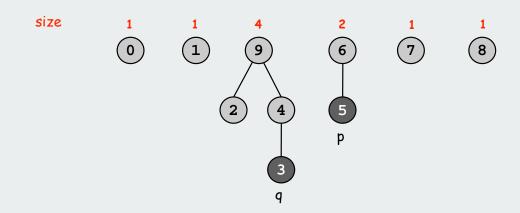
- Union too expensive (N steps).
- Trees are flat, but too expensive to keep them flat.

#### Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N steps)
- Need to do find to do union

| algorithm   | union | find       |              |
|-------------|-------|------------|--------------|
| Quick-find  | Ν     | 1          |              |
| Quick-union | N*    | N <b>←</b> | — worst case |

<sup>\*</sup> includes cost of find


# Improvement 1: Weighting

#### Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

#### Ex. Union of 5 and 3.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.



# Weighted quick-union example

# Weighted quick-union: Java implementation

#### Java implementation.

- Almost identical to quick-union.
- Maintain extra array sz[] to count number of elements in the tree rooted at i.

Find. Identical to quick-union.

#### Union. Modify quick-union to

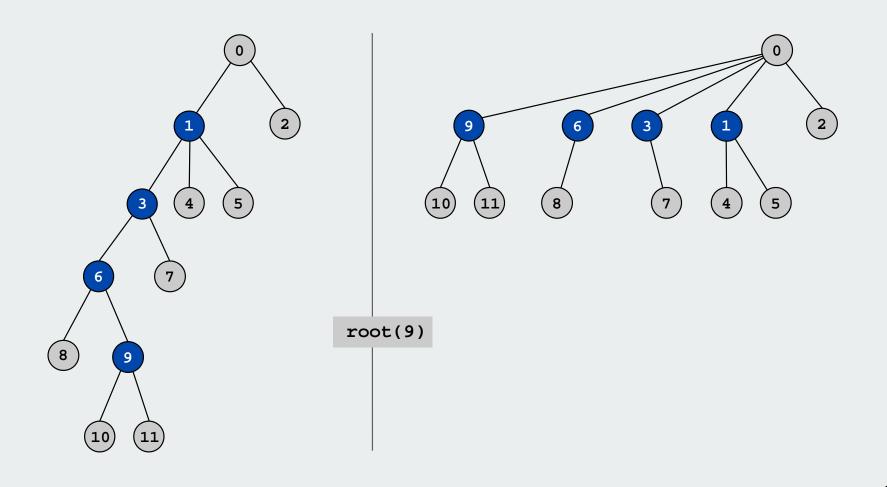
- merge smaller tree into larger tree
- update the sz[] array.

```
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }</pre>
```

# Weighted quick-union analysis

#### Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.
- Fact: depth is at most lg N. [needs proof]


| Data Structure | Union  | Find |
|----------------|--------|------|
| Quick-find     | Ν      | 1    |
| Quick-union    | N *    | Ν    |
| Weighted QU    | lg N * | lg N |

<sup>\*</sup> includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

# Improvement 2: Path compression

Path compression. Just after computing the root of i, set the id of each examined node to root(i).



# Weighted quick-union with path compression

#### Path compression.

- Standard implementation: add second loop to root() to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.

```
public int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

# Weighted quick-union with path compression

0 1 2 3 3 5 6 7 8 9 0 1 2 3 3 5 6 7 8 3 8 1 2 3 3 5 6 7 8 3 8 1 3 3 3 5 6 7 8 3 8 1 3 3 3 5 5 7 8 3 9 0 3 5 7 0 2 4 9 6 8 1 3 3 3 3 5 7 8 3 8 1 3 3 3 3 5 3 8 3 8 1 3 3 3 3 5 3 3 3 8 3 3 3 3 3 3 3 3 no problem: trees stay VERY flat

# WQUPC performance

Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes  $O(N + M \lg^* N)$  time.

- Proof is very difficult.
- But the algorithm is still simple!

number of times needed to take the lg of a number until reaching 1

#### Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

because  $lg^* N$  is a constant in this universe

| N      | lg* N |
|--------|-------|
| 1      | 0     |
| 2      | 1     |
| 4      | 2     |
| 16     | 3     |
| 65536  | 4     |
| 265536 | 5     |

#### Amazing fact:

• In theory, no linear linking strategy exists

#### Summary

| Algorithm        | Worst-case time |
|------------------|-----------------|
| Quick-find       | MN              |
| Quick-union      | MN              |
| Weighted QU      | N + M log N     |
| Path compression | N + M log N     |
| Weighted + path  | (M + N) lg* N   |

M union-find ops on a set of N objects

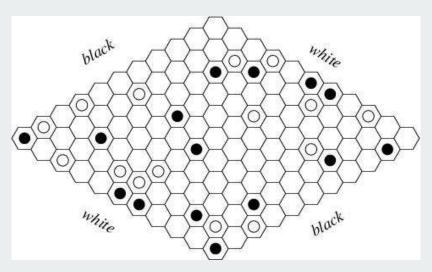
#### Ex. Huge practical problem.

- 10<sup>10</sup> edges connecting 10<sup>9</sup> nodes.
- WQUPC reduces time from 3,000 years to 1 minute.
- Supercomputer won't help much. WQUPC on Java cell phone beats QF on supercomputer!

• Good algorithm makes solution possible.

#### Bottom line.

WQUPC makes it possible to solve problems that could not otherwise be addressed


#### Union-find applications

- ✓ Network connectivity.
- Percolation.
- Image processing.
- Least common ancestor.
- Equivalence of finite state automata.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Games (Go, Hex)
- Compiling equivalence statements in Fortran.

#### Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

- Two players alternate in picking a cell in a hex grid.
- Black: make a black path from upper left to lower right.
- White: make a white path from lower left to upper right.



Reference: http://mathworld.wolfram.com/GameofHex.html

Union-find application. Algorithm to detect when a player has won.