

Network connectivity

Basic abstractions

� set of objects

� union command: connect two objects

� find query: is there a path connecting one object to another?

4

Union-find applications involve manipulating objects of all types.

� Computers in a network.

� Web pages on the Internet.

� Transistors in a computer chip.

� Variable name aliases.

� Pixels in a digital photo.

� Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

� Hide details not relevant to union-find.

� Integers allow quick access to object-related info.

� Could use symbol table to translate from object names

5

Objects

use as array index

0 7

2 3

8

4

6 5 91

stay tuned

6

Union-find abstractions

Simple model captures the essential nature of connectivity.

� Objects.

� Disjoint sets of objects.

� Find query: are objects 2 and 9 in the same set?

� Union command: merge sets containing 3 and 8.

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

0 1 { 2 3 4 8 9 } { 5-6 } 7

0 1 { 2 3 9 } { 5-6 } 7 { 4-8 }

add a connection between
two grid points

subsets of connected grid points

are two grid points connected?

0 1 2 3 4 5 6 7 8 9 grid points

Connected components

Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

7

 in out

 3 4 3 4

 4 9 4 9

 8 0 8 0

 2 3 2 3

 5 6 5 6

 2 9

 5 9 5 9

 7 3 7 3

0

2 3

8

4

6 5 91

7 union commands

3 = 10-7 components

7

8

Network connectivity: larger example

find(u, v) ?

u

v

9

Network connectivity: larger example

63 components

find(u, v) ?

true

10

Union-find abstractions

� Objects.

� Disjoint sets of objects.

� Find queries: are two objects in the same set?

� Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

� Find queries and union commands may be intermixed.

� Number of operations M can be huge.

� Number of objects N can be huge.

12

Quick-find [eager approach]

Data structure.

� Integer array id[] of size N.

� Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

13

Quick-find [eager approach]

Data structure.

� Integer array id[] of size N.

� Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q,

change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 6 6 6 6 6 7 8 6

id[3] = 9; id[6] = 6
3 and 6 not connected

problem: many values can change

14

Quick-find example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

problem: many values can change

16

Quick-find is too slow

Quick-find algorithm may take ~MN steps

to process M union commands on N objects

Rough standard (for now).

� 109 operations per second.

� 109 words of main memory.

� Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

� 1010 edges connecting 109 nodes.

� Quick-find takes more than 1019 operations.

� 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

� New computer may be 10x as fast.

� But, has 10x as much memory so problem may be 10x bigger.

� With quadratic algorithm, takes 10x as long!

a truism (roughly) since 1950 !

18

Quick-union [lazy approach]

Data structure.

� Integer array id[] of size N.

� Interpretation: id[i] is parent of i.

� Root of i is id[id[id[...id[i]...]]].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6

keep going until it doesn’t change

19

Quick-union [lazy approach]

Data structure.

� Integer array id[] of size N.

� Interpretation: id[i] is parent of i.

� Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6
3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 9 7 8 9

4

7

3 5

0 1 9

6

8

2

only one value changes

p q

keep going until it doesn’t change

20

Quick-union example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem: trees can get tall

22

Quick-union is also too slow

Quick-find defect.

� Union too expensive (N steps).

� Trees are flat, but too expensive to keep them flat.

Quick-union defect.

� Trees can get tall.

� Find too expensive (could be N steps)

� Need to do find to do union

algorithm union find

Quick-find N 1

Quick-union N* N worst case

* includes cost of find

24

Improvement 1: Weighting

Weighted quick-union.

� Modify quick-union to avoid tall trees.

� Keep track of size of each component.

� Balance by linking small tree below large one.

Ex. Union of 5 and 3.

� Quick union: link 9 to 6.

� Weighted quick union: link 6 to 9.

4

7

3

5

0 1 9 6 8

2

p

q

4 211 1 1size

25

Weighted quick-union example

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem: trees stay flat

26

Weighted quick-union: Java implementation

Java implementation.

� Almost identical to quick-union.

� Maintain extra array sz[] to count number of elements

in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to

� merge smaller tree into larger tree

� update the sz[] array.

27

Weighted quick-union analysis

Analysis.

� Find: takes time proportional to depth of p and q.

� Union: takes constant time, given roots.

� Fact: depth is at most lg N. [needs proof]

Stop at guaranteed acceptable performance? No, easy to improve further.

Data Structure Union Find

Quick-find N 1

Quick-union N * N

Weighted QU lg N * lg N

* includes cost of find

28

Path compression. Just after computing the root of i,

set the id of each examined node to root(i).

Improvement 2: Path compression

2

41110

2

54

7

8

1110

root(9)

0

1

0

3

6

9

9

78

136

5

Path compression.

� Standard implementation: add second loop to root() to set

the id of each examined node to the root.

� Simpler one-pass variant: make every other node in path

point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

29

Weighted quick-union with path compression

only one extra line of code !

public int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

30

Weighted quick-union with path compression

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem: trees stay VERY flat

31

WQUPC performance

Theorem. Starting from an empty data structure, any sequence

of M union and find operations on N objects takes O(N + M lg* N) time.

� Proof is very difficult.

� But the algorithm is still simple!

Linear algorithm?

� Cost within constant factor of reading in the data.

� In theory, WQUPC is not quite linear.

� In practice, WQUPC is linear.

Amazing fact:

� In theory, no linear linking strategy exists

because lg* N is a constant
in this universe

number of times needed to take
the lg of a number until reaching 1

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

32

Summary

Ex. Huge practical problem.

� 1010 edges connecting 109 nodes.

� WQUPC reduces time from 3,000 years to 1 minute.

� Supercomputer won't help much.

� Good algorithm makes solution possible.

Bottom line.

 WQUPC makes it possible to solve problems

 that could not otherwise be addressed

M union-find ops on a set of N objects

Algorithm Worst-case time

Quick-find M N

Quick-union M N

Weighted QU N + M log N

Path compression N + M log N

Weighted + path (M + N) lg* N

WQUPC on Java cell phone beats QF on supercomputer!

34

Union-find applications

� Network connectivity.

� Percolation.

� Image processing.

� Least common ancestor.

� Equivalence of finite state automata.

� Hinley-Milner polymorphic type inference.

� Kruskal's minimum spanning tree algorithm.

� Games (Go, Hex)

� Compiling equivalence statements in Fortran.

39

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

� Two players alternate in picking a cell in a hex grid.

� Black: make a black path from upper left to lower right.

� White: make a white path from lower left to upper right.

Union-find application. Algorithm to detect when a player has won.

Reference: http://mathworld.wolfram.com/GameofHex.html

