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Take-aways

• What’s a hash function? What makes a hash function
good?

• What’s the purpose of a hash table? How does it work,
and how can it “go wrong”?

• What’s the purpose of a Bloom filter? How does it work,
and how can it “go wrong”?

• What does it mean for a data structure to be
probabilistic?
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Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:

byteFrequencies : {0,1, . . . , 255} → N

How did you represent this?

Easy:
size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1, . . . , k}
for some k

Notation note: We will write Nk for the set {0,1, . . . , k}
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A different domain

What if we wanted to count word frequences instead?

We need a mapping from words (strings) to their counts:

wordFrequences : { the set of all strings } → N

How can we represent this?

We can’t use strings to index into an array—we need a hash
function
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Definition: hash function

A hash function for some type maps values of that type to Nk

Here is a really bad hash function for strings:

hashk(c1 . . . cn) =
n∑

i=1
ord(ci) mod k

It adds up the character values
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How do we use a hash function?

A hash function for some type maps values of that type to Nk

We then store our value v at the index given by hash(v).
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Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
0
0
0
0

Hash collision!
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Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
1
1
1
0
0

“frequencies”
2

Hash collision!
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Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:
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0
1
1
1
0
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“at” 3
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Take two: separate chaining

Each bucket stores a linked list of associations:

(hash, 1)

(frequencies, 1) → (by, 1)
(word, 2) → (at, 1) → (of, 1)
(store, 1) → (index, 1)
(given, 1)
(the, 3)
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Time complexity of hash table operations

What’s the time complexity of insert? Lookup?

Depends on how many collisions we have!

If we avoid collisions: O(1) on average

But too many collisions and the lists get too long: O(n)
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Probabilities of collisions
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What makes a good hash function?

Inputs get scattered all over the range of the output

Stronger: changing any one bit of the input changes each bit
of the output with probability 1

2
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