
Probabilistic Data Structures
EECS 214

November 18, 2015



Take-aways

• What’s a hash function? What makes a hash function
good?

• What’s the purpose of a hash table? How does it work,
and how can it “go wrong”?

• What’s the purpose of a Bloom filter? How does it work,
and how can it “go wrong”?

• What does it mean for a data structure to be
probabilistic?

2:1



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:

byteFrequencies : {0,1, . . . , 255} → N

How did you represent this?

Easy:
size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1, . . . , k}
for some k

Notation note: We will write Nk for the set {0,1, . . . , k}

3:1



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:

byteFrequencies : {0,1, . . . , 255} → N

How did you represent this?

Easy:
size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1, . . . , k}
for some k

Notation note: We will write Nk for the set {0,1, . . . , k}

3:2



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:

byteFrequencies : {0,1, . . . , 255} → N

How did you represent this?

Easy:
size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1, . . . , k}
for some k

Notation note: We will write Nk for the set {0,1, . . . , k}

3:3



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:

byteFrequencies : {0,1, . . . , 255} → N

How did you represent this?

Easy:
size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1, . . . , k}
for some k

Notation note: We will write Nk for the set {0,1, . . . , k}

3:4



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:

byteFrequencies : {0,1, . . . , 255} → N

How did you represent this?

Easy:
size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1, . . . , k}
for some k

Notation note: We will write Nk for the set {0,1, . . . , k}

3:5



A different domain

What if we wanted to count word frequences instead?

We need a mapping from words (strings) to their counts:

wordFrequences : { the set of all strings } → N

How can we represent this?

We can’t use strings to index into an array—we need a hash
function

4:6



A different domain

What if we wanted to count word frequences instead?

We need a mapping from words (strings) to their counts:

wordFrequences : { the set of all strings } → N

How can we represent this?

We can’t use strings to index into an array—we need a hash
function

4:7



A different domain

What if we wanted to count word frequences instead?

We need a mapping from words (strings) to their counts:

wordFrequences : { the set of all strings } → N

How can we represent this?

We can’t use strings to index into an array—we need a hash
function

4:8



Definition: hash function

A hash function for some type maps values of that type to Nk

Here is a really bad hash function for strings:

hashk(c1 . . . cn) =
n∑

i=1
ord(ci) mod k

It adds up the character values

5:9



Definition: hash function

A hash function for some type maps values of that type to Nk

Here is a really bad hash function for strings:

hashk(c1 . . . cn) =
n∑

i=1
ord(ci) mod k

It adds up the character values

5:10



Definition: hash function

A hash function for some type maps values of that type to Nk

Here is a really bad hash function for strings:

hashk(c1 . . . cn) =
n∑

i=1
ord(ci) mod k

It adds up the character values

5:11



How do we use a hash function?

A hash function for some type maps values of that type to Nk

We then store our value v at the index given by hash(v).

6:12



How do we use a hash function?

A hash function for some type maps values of that type to
indices into an array of size k

We then store our value v at the index given by hash(v).

6:13



How do we use a hash function?

A hash function for some type maps values of that type to Nk
We then store our value v at the index given by hash(v).

6:14



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
0
0
0
0

Hash collision!

7:15



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
0
0
0
0

“store”

Hash collision!

7:16



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
0
0
0
0

“store”

Hash collision!

7:17



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
0
1
0
0

“store” 4

Hash collision!

7:18



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
0
1
0
0

“word”

Hash collision!

7:19



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
0
1
0
0

“word”

Hash collision!

7:20



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
0
1
1
0
0

“word” 3

Hash collision!

7:21



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
1
1
1
0
0

“frequencies”
2

Hash collision!

7:22



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
1
1
1
0
0

“at” 3

Hash collision!

7:23



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hash7

0
0
1
1
1
0
0

“at”

Hash collision!

7:24



Take two: separate chaining

Each bucket stores a linked list of associations:

(hash, 1)

(frequencies, 1) → (by, 1)
(word, 2) → (at, 1) → (of, 1)
(store, 1) → (index, 1)
(given, 1)
(the, 3)

8:25



Take two: separate chaining

Each bucket stores a linked list of associations:

(hash, 1)

(frequencies, 1) → (by, 1)
(word, 2) → (at, 1) → (of, 1)
(store, 1) → (index, 1)
(given, 1)
(the, 3)

8:26



Time complexity of hash table operations

What’s the time complexity of insert? Lookup?

Depends on how many collisions we have!

If we avoid collisions: O(1) on average

But too many collisions and the lists get too long: O(n)

9:27



Time complexity of hash table operations

What’s the time complexity of insert? Lookup?

Depends on how many collisions we have!

If we avoid collisions: O(1) on average

But too many collisions and the lists get too long: O(n)

9:28



Time complexity of hash table operations

What’s the time complexity of insert? Lookup?

Depends on how many collisions we have!

If we avoid collisions: O(1) on average

But too many collisions and the lists get too long: O(n)

9:29



Time complexity of hash table operations

What’s the time complexity of insert? Lookup?

Depends on how many collisions we have!

If we avoid collisions: O(1) on average

But too many collisions and the lists get too long: O(n)

9:30



Probabilities of collisions

10:31



What makes a good hash function?

Inputs get scattered all over the range of the output

Stronger: changing any one bit of the input changes each bit
of the output with probability 1

2

11:32



What makes a good hash function?

Inputs get scattered all over the range of the output

Stronger: changing any one bit of the input changes each bit
of the output with probability 1

2

11:33



Take-aways

• What’s a hash function? What makes a hash function
good?

• What’s the purpose of a hash table? How does it work,
and how can it “go wrong”?

• What’s the purpose of a Bloom filter? How does it work,
and how can it “go wrong”?

• What does it mean for a data structure to be
probabilistic?

12:34


