Probabilistic Data Structures

EECS 214
November 18, 2015



Take-aways

e What’s a hash function? What makes a hash function
good?

e What’s the purpose of a hash table? How does it work,
and how can it “go wrong”?

e What’s the purpose of a Bloom filter? How does it work,
and how can it “go wrong”™?

e What does it mean for a data structure to be
probabilistic?

2:1



Mappings

Remember counting byte frequencies in HW1?

3:1



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:
byteFrequencies : {0,1,...,255} — N

How did you represent this?

3:2



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:
byteFrequencies : {0,1,...,255} — N

How did you represent this?

Easy:
size_t byte_freqs[256];

3:3



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:
byteFrequencies : {0,1,...,255} — N
How did you represent this?

Easy:
size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1,...,k}
for some &

3:4



Mappings

Remember counting byte frequencies in HW1?

You need(ed) a mapping from byte values to their counts:
byteFrequencies : {0,1,...,255} — N

How did you represent this?

Easy:

size_t byte_freqs[256];

Arrays are perfect for mappings whose domain is {0,1,...,k}
for some &

Notation note: We will write Ny, for the set {0,1,... k}
3:5



A different domain

What if we wanted to count word frequences instead?

4:6



A different domain

What if we wanted to count word frequences instead?

We need a mapping from words (strings) to their counts:
wordFrequences : { the set of all strings } — N

How can we represent this?

4:7



A different domain

What if we wanted to count word frequences instead?

We need a mapping from words (strings) to their counts:
wordFrequences : { the set of all strings } — N

How can we represent this?

We can’t use strings to index into an array—we need a hash
function

4:8



Definition: hash function

A hash function for some type maps values of that type to N

5:9



Definition: hash function

A hash function for some type maps values of that type to N

Here is a really bad hash function for strings:

hashy(c Zord ci) modk

5:10



Definition: hash function

A hash function for some type maps values of that type to N

Here is a really bad hash function for strings:

hashy(c Zord ci) modk

It adds up the character values

5:11



How do we use a hash function?

A hash function for some type maps values of that type to N,

6:12



How do we use a hash function?

A hash function for some type maps values of that type to
indices into an array of size k

6:13



How do we use a hash function?

A hash function for some type maps values of that type to N,
We then store our value v at the index given by hash(v).

6:14



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

hashq

(=] Nl Neo) Hen) H o] Ren) e}

7:15



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

“store” hashy

(=] Nl Neo) Hen) H o] Ren) e}

7:16



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

“store” ——— hashy

(=] Nl Neo) Hen) H o] Ren) e}

7:17



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

“store” ———— hashy 4

(=] Nl N R N o] Re) Ne}

7:18



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

“word” hashy

(=] Nl N R N o] Re) Ne}

7:19



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

“‘word” ———— hashq

(=] Nl N R N o] Re) Ne}

7:20



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

3
“wordf” ———— hash; ————

QIO IHOIOCO

7:21



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

2

“frequencies” ———— hashy

OO R OO

7:22



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

‘at’ ——— hash; ———

OO R OO

7:23



Example (using shitty string hash function)

Store word frequencies at the index given by the hash of the
word:

“at? ———— hashq

OO R OO

Hash collision!

7:24



Take two: separate chaining

Each bucket stores a linked list of associations:

(hash, 1)

(frequencies, 1) — (by, 1)
(word, 2) — (at, 1) — (of, 1)
(store, 1) — (index, 1)
(given, 1)

(the, 3)

8:25



Take two: separate chaining

Each bucket stores a linked list of associations:

(hash, 1)

(frequencies, 1) — (by, 1)
(word, 2) — (at, 1) — (of, 1)
(store, 1) — (index, 1)
(given, 1)

(the, 3)

8:26



Time complexity of hash table operations

What'’s the time complexity of insert? Lookup?

9:27



Time complexity of hash table operations

What'’s the time complexity of insert? Lookup?

Depends on how many collisions we have!

9:28



Time complexity of hash table operations

What'’s the time complexity of insert? Lookup?
Depends on how many collisions we have!

If we avoid collisions: O(1) on average

9:29



Time complexity of hash table operations

What'’s the time complexity of insert? Lookup?
Depends on how many collisions we have!
If we avoid collisions: O(1) on average

But too many collisions and the lists get too long: O(n)

9:30



Humber of
haa-'sﬁ-.gr}ea
77163
30084
9292
20832
Q27
204
93
30
10

Probabilities of collisions

Number of
et
5.06 billion
1.97 billion
608 million
192 million
60.7 million
19.2 million
6.07 million
1.92 million
607401
192077
60740
19208
6074
1921
608
193
61
20
7

Number of
160-bit
hash values
1.42x1n‘*
5.55 = 102
171%10%
5.41x10%
171 % 10%
5.41x% 107
171 %107
5.41x%10%
171 %10%
5.41x%10"%
171%10"8
5.41x%10"%
171=10"8
541%10"7
171%10"7
5.41 %10
171 = 10"
5.41 %10
171%10"

=1

Odds of a
hash collision

1in2
1in10
1in 100
1in 1000
1in 10000
1in 100000
1in a million
1in 10 million

1in 100 million =

1in a billion

1in 10 billion
1in 100 billion

1in atrillion

1in 10 trillion

1in 100 trillion

1in 10"
1in10'¢
1in 10"
1in10'®

10:31

Odds of a full house in poker
~1in 653
Odds of four-of-a-kind in poker
———1in 4154
Odds nf bemg struck by lightning
_—1in5

Odds of winning a 6/49 lottery
+—1in 13.9 million

Odds of dying in a shark attack
=1 in 300 milion

Odds of a meteor
landing on your house
—— 1 in 182 trillion



What makes a good hash function?

Inputs get scattered all over the range of the output

11:32



What makes a good hash function?

Inputs get scattered all over the range of the output

Stronger: changing any one bit of the input changes each bit
of the output with probability %

11:33



Take-aways

e What’s a hash function? What makes a hash function
good?

e What’s the purpose of a hash table? How does it work,
and how can it “go wrong”™?

e What’s the purpose of a Bloom filter? How does it work,
and how can it “go wrong”™?

e What does it mean for a data structure to be
probabilistic?

12:34



