
You want to invite your 200 closest friends to a party at
your mansion. Your friends are a fractious bunch, and
you have many pairs of friends who don’t get along and

cannot be in the same room together. Do you have
enough rooms to host the party?

1:1



Each Boeing 787 Dreamliner is built from 2.3 million
parts sourced from suppliers around the world. Not all
2.3m parts are put together at once—some parts are
assembled from sub-parts at various facilities before

being shipped elsewhere for further assembly.1

Given the full dependency information, what is the
shortest time to manufacture a plane from start to

finish?

1For example, before being sent to Washington where they are mounted
in the fuselage, seats are put together in Kentucky from seatbelt made in
Ohio, buckles imported from China, and cushions that are manufactured
in Estonia using locally-sourced upholstery and foam from Pennsylvania.2

2Lies.
2:1



The Province of Moravia is developing a plan to electrify
its 10 largest cities and towns, connecting them into a
single electrical network. Given the distances required
to connect each pair of municipalities directly by trunk
lines, what is the shortest total amount of trunk line

necessary for all 10 to be connected?

3:1



Graphs
EECS 214

November 20, 2015



Graph problems

Party invites Graph coloring (people are vertices, conflicts
are edges, and rooms are colors)

Dreamliner Dependency graph
Electrification Minimum spanning tree

5:1



Take-aways

• What kinds of graphs are there?
• What are DFS and BFS, and how can we implement

them?

6:1



Definitions

A graph is a pair (V,E), where V is the set of vertices and
symmetric relation E ⊆ V2 is the set of edges.

A directed graph is a pair (V,E) where V is the set of vertices
and relation E ⊆ V2 is the set of edges.

7:1



Definitions

A graph is a pair (V,E), where V is the set of vertices and
symmetric relation E ⊆ V2 is the set of edges.

A directed graph is a pair (V,E) where V is the set of vertices
and relation E ⊆ V2 is the set of edges.

7:2



Some useful definitions

Successors(v) = {(us,ud) ∈ E : us = v}
Predecessors(v) = {(us,ud) ∈ E : ud = v}

8:1



Graph search (basic algorithm)

def GraphSearch(start):
visited← ∅
todo ← { start }

while todo ̸= ∅:
v← remove an element from todo
if v ̸∈ visited:

Visit(v)
visited← {v} ∪ visited
todo ← Successors(v) ∪ todo

9:1



Bread-first search

If we make todo a queue (FIFO), we get BFS:

def BFS(start):
visited← ∅
todo ← empty queue
enqueue start in todo

while todo ̸= ∅:
v← dequeue an element todo
if v ̸∈ visited:

Visit(v)
visited← {v} ∪ visited
enqueue Successors(v) in todo

10:1



Take-aways

• What kinds of graphs are there?
• What are DFS and BFS, and how can we implement

them?

11:1


