Graph representations and algorithms

EECS 214

November 23, 2015

Take-aways

- How are graphs commonly represented?
- How can we find shortest paths?

Definitions

A graph is a pair (V, E), where V is the set of vertices and symmetric relation $E \subseteq V^2$ is the set of *edges*.

Definitions

A graph is a pair (V, E), where V is the set of *vertices* and symmetric relation $E \subseteq V^2$ is the set of *edges*.

A *directed graph* is a pair (V, E) where V is the set of *vertices* and relation $E \subseteq V^2$ is the set of edges.

Weighted graph definitions

Let *W* be a set of *weights*. (Often $W = \mathbb{R}$.) Then:

A weighted directed graph is a pair (V, E), where V is the set of vertices and $E: V^2 \rightarrow W$ is a partial map from edges to their weights.

Weighted graph definitions

Let *W* be a set of *weights*. (Often $W = \mathbb{R}$.) Then:

A weighted directed graph is a pair (V, E), where V is the set of vertices and $E: V^2 \rightarrow W$ is a partial map from edges to their weights.

Alternatively, we can make E total: let $\infty \in W$ and $E: V^2 \to W$. Then $E(v, u) = \infty$ means there is no edge from v to u.

Weighted graph definitions

Let *W* be a set of *weights*. (Often $W = \mathbb{R}$.) Then:

A weighted directed graph is a pair (V, E), where V is the set of vertices and $E: V^2 \rightarrow W$ is a partial map from edges to their weights.

Alternatively, we can make E total: let $\infty \in W$ and $E: V^2 \to W$. Then $E(v, u) = \infty$ means there is no edge from v to u.

A *weighted (undirected) graph* is a weighted directed graph where E(v, u) = E(u, v) for all $v, u \in V$.

Two major graph representations

Two major graph representations

Adjacency list				
V	Successors			
Α	B, C			
В	F			
С	D, F			
D	A, E			
\mathbf{E}	F, C			
\mathbf{F}				

5:2

Two major graph representations

Adjacency matrix

	A	B	C	D	E	F	_
Α		٠	•				-
В						•	-
С				•		•	-
D	•				•		-
Е			•			•	-
F							-
	I		I	I	I	I	5:

Adjacency list

•	Successors
Α	B, C
В	F
С	D, F
D	A, E
Ε	F, C
\mathbf{F}	

5:3

Two major weighted graph representations

Adjacency matrix

	Α	B	С	D	E	F			
A		2	3						
В						12			
C				1		7			
D	10				1				
Е			1			5			
F						6.	1		
						. 0.1			

Adjacency list

- V Successors
- A (B,2), (C,3) B (F,12) C (D,1), (F,7)

(F,1), (C,5)

 \mathbf{E}

F

Dijkstra's algorithm

Take-aways

- How are graphs commonly represented?
- How can we find shortest paths?