
Exam 1 – Sample Answers

October 26, 2015

Variables whose domain is not specified explicitly range over the reals. So for example, if a
function is defined as f(x) = x2, then dom f = cod f = R.

Discrete math

Sets

True or false:

• If x ∈ A then x ∈ A ∪B T by def. of union

• The empty set has no subsets. F, because ∅ ⊆ ∅

• The empty set is a proper subset of every set. F, no set is proper subset of itself

• 5 ∈ {2x + 1 : x ∈ N} T with x = 2

• The power set of the set {1, 2, 3, 4, 5} has 25 elements. F, it has 25 = 32

Relations

Which of these relations are reflexive? Symmetric? Anti-symmetric? Transitive?

1



• {(x, y) : x < 2y}

– not reflexive, counterexample −1 6< 2(−1)

– not symmetric, counterexample 2 < 2(5) but 5 6< 2(2)

– not transitive, counter example 5 < 2(3) and 3 < 2(2) but 5 6< 2(2)

• {(x, y) : x, y ∈ N, 2x ≤ y}
– not reflexive, counterexample 2(1) 6≤ 1

– not symmetric, counterexample 2(2) ≤ 5 but 2(5) 6≤ 2

– transitive; suppose 2x ≤ y and 2y ≤ z. Then 4x ≤ 2y. Note that for
non-negative numbers (and N does not include negatives), 2x ≤ 4x. Thus
by transitivity of ≤ twice, 2x ≤ 4x ≤ 2y ≤ z.

• For x, y ∈ SetOfAllHumans, x R y iff x and y have the same birthday.

All three. Everyone who shares the same birthday is R-related to everyone else
who shares that birthday and no one else.

• {(x, y) : x, y ∈ Z, x2 = y2}
All three for the same reason.

Functions

Which of these relations are functions?

• {(x, y) : x2 = y}
Is a function, because there is only one y for each x, its square.

• {(x, y) : x2 = y2}
Is not a function; counter example: both (2, 2) and (2,−2) are in the relation.

• {(x, y) : x = y2}
Is not a function; counter example: both (4, 2) and (4,−2) are in the relation.

Which of these functions are injective? Surjective? Bijective?

• f(x) = x/2

Bijective, with inverse f−1(y) = 2y

2



• f : Z→ Z where f(x) = 2x.

Injective, because each integer is twice as much as only one other integer; not
surjective because odd numbers are not in the image.

• f : [0, 1]→ [0, 1] where f(x) = x2.

Bijective, with inverse f−1(y) =
√
y. However, if the codomain were made

wider without increasing the domain to compensate, then it would no longer
be surjective. And if the domain included negative numbers then it would no
longer be injective.

Huffman coding

Trees

Consider these three binary trees:

T =

a

b

c d

e

f

g h

U =

a

b

c d

g h

e

f

V =

e

a

b

c d

f

g h

Which pairs of them have the same:

• pre-order traversal? none

• in-order traversal? T and V (compare below)

• post-order traversal? none

• level traversal? T and U

Write out the letters in the order they would be visited by each kind of traversal.

3



T U V
pre-order abcdefgh abcdghef eabcdfgh
in-order cbdaegfh cbgdhaef cbdaegfh
post-order cdbghfea cghdbfea cdbaghfe
level abecdfgh abecdfgh eafbghcd

True or false:

• A binary tree node has exactly two children. F, could have 0, 1, or 2

• A binary tree node has at most two children. T

• A binary tree has edges labeled with 0s and 1s. F, tree edges needn’t have labels

Prefix codes

Suppose we want to encode the symbols {A,B,C,D} in binary. Is this a valid prefix code?

A 7→ 0

B 7→ 10

C 7→ 110

D 7→ 111

Yes, because we can buld a prefix code tree (below)

If it is, build the prefix code tree; if not, explain why you can’t.

A

B

C D

4



Encode this message: “BADCAB” 100111110010

Decode this message: “11101110” DADA

True or false:

• A prefix code is a code in which every code word is a prefix of some other code word.
F, the opposite is true

• Every code word in a prefix code must have the same length.
F, the point of a prefix code is to allow variable length

• If all the code words in a prefix code are reversed, the result is still a prefix code.
F, code above is counterexample

Huffman trees

Consider these two trees:

H =

51

17

7

3
‘a’

4
‘b’

10

4
‘c’

6
‘d’

I =

51

25

8
‘a’

17
‘b’

26

14
‘c’

12
‘d’

Which of these are valid Huffman trees? neither

For those that aren’t, what’s the problem?

H is not, because the node with weight 17 has only one child and the weights
are wrong. I is not because the nodes with weights 8 and 12 should have been
combined first.

Fix them.

5



H =

51

7

3
‘a’

4
‘b’

10

4
‘c’

6
‘d’

I =

51

31

14
‘c’

17
‘b’

20

8
‘a’

12
‘d’

Huffman code this message: “brevity is the soul of wit”. Construct a Huffman tree
based on the frequencies, and include the tree in your answer.

Frequences: b:1 f:1 h:1 l:1 r:1 u:1 v:1 w:1 y:1 e:2 o:2 s:2 i:3 t:3 ’ ’:5

Tree construction:

1
‘b’

1
‘f’

1
‘h’

1
‘l’

1
‘r’

1
‘u’

1
‘v’

1
‘w’

1
‘y’

2
‘e’

2
‘o’

2
‘s’

3
‘i’

3
‘t’

5
‘ ’

There are nine trees of weight 1, so after four steps eight of them are paired:

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

2

1
‘r’

1
‘u’

2

1
‘v’

1
‘w’

1
‘y’

2
‘e’

2
‘o’

2
‘s’

3
‘i’

3
‘t’

5
‘ ’

Now combine the 1 with a 2:

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

2

1
‘r’

1
‘u’

3

2

1
‘v’

1
‘w’

1
‘y’

2
‘e’

2
‘o’

2
‘s’

3
‘i’

3
‘t’

5
‘ ’

There are now six trees of weight 2, so after three steps we’ve paired all of them:

4

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

4

2

1
‘r’

1
‘u’

2
‘e’

3

2

1
‘v’

1
‘w’

1
‘y’

4

2
‘o’

2
‘s’

3
‘i’

3
‘t’

5
‘ ’

6



Now combine two of the 3s:

4

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

4

2

1
‘r’

1
‘u’

2
‘e’

3

2

1
‘v’

1
‘w’

1
‘y’

4

2
‘o’

2
‘s’

6

3
‘i’

3
‘t’

5
‘ ’

Now the 3 with a 4:

4

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

4

2

1
‘r’

1
‘u’

2
‘e’

7

3

2

1
‘v’

1
‘w’

1
‘y’

4

2
‘o’

2
‘s’

6

3
‘i’

3
‘t’

5
‘ ’

Now combine the remaining 4s:

8

4

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

4

2

1
‘r’

1
‘u’

2
‘e’

7

3

2

1
‘v’

1
‘w’

1
‘y’

4

2
‘o’

2
‘s’

6

3
‘i’

3
‘t’

5
‘ ’

Now combine the 6 with the 5:

8

4

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

4

2

1
‘r’

1
‘u’

2
‘e’

7

3

2

1
‘v’

1
‘w’

1
‘y’

4

2
‘o’

2
‘s’

11

6

3
‘i’

3
‘t’

5
‘ ’

Now 8 with 7:

7



15

8

4

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

4

2

1
‘r’

1
‘u’

2
‘e’

7

3

2

1
‘v’

1
‘w’

1
‘y’

4

2
‘o’

2
‘s’

11

6

3
‘i’

3
‘t’

5
‘ ’

One last combining step to get the Huffman tree:

26

15

8

4

2

1
‘b’

1
‘f’

2

1
‘h’

1
‘l’

4

2

1
‘r’

1
‘u’

2
‘e’

7

3

2

1
‘v’

1
‘w’

1
‘y’

4

2
‘o’

2
‘s’

11

6

3
‘i’

3
‘t’

5
‘ ’

Now we can encode the message: brevity is the soul of wit

With spaces between codewords for clarity: 00000 00100 0011 01000 100 101 0101 11 100
0111 11 101 00010 0011 11 0111 0110 00101 00011 11 0110 00001 11 01001 100 101

Arrays and linked lists

True or false:

• The time to get an element of an array, given its index, does not depend on the size of
the array. T, constant-time indexing

• One advantage of arrays over linked lists is that their capacity can grow in place without
having to reallocate or copy elements. F, they can’t do that

8



• Unlike lists, the size of an array must be known at compile time.
F, size needs to be known when array is created

• The time to get an element of a linked list, given its ordinal position in the list, does
not depend on the position of the element. F, need to follow links

• An array can use less space than a linked list because it does not need extra space for
pointers. T, array elements are packed adjacently

A stack is a kind of data structure that allows adding and removing elements, and keeps
track of the order that they are added so that they are removed in the reverse order. It has
two main operations:

• The push operation adds an element to the queue.

• The pop operation the most recently pushed element that has not yet been popped.

For example, here is a sequence of interactions with a stack:

s = new Stack(); // s is empty

s.push(1); // s is 1

s.push(2); // s is 2 1

s.push(3); // s is 3 2 1

a = s.pop(); // s is 2 1, a is 3

s.push(4); // s is 4 2 1

s.push(5); // s is 5 4 2 1

b = s.pop(); // s is 4 2 1, b is 5

s.push(6); // s is 6 4 2 1

Now consider these two representations of a stack:

Linked list representation. The elements are stored in newest-to-oldest order in a singly-
linked list. A one-element struct with one field, head, stores a pointer to the head of
the list, in order to allow updating the head pointer. For example, here is how the
stack s from the sample interaction would be represented:

9



1246

head:

The next element to be popped would be 6, followed by 4, 2, and then 1.

Array representation. The elements are stored in oldest-to-newest order in an array, along
with two additional pieces of information: the current number of elements in the stack
(labeled size) and the capacity of the array (labeled cap). For example, here is stack
s in the array representation:

1 2 4 6 ? ? ? ?

data: size: cap:

4 8

As in the other representation, the next element to be popped would be 6, followed
by 4, 2, and then 1. The light gray question marks (?) indicate locations in the array
whose values don’t matter, either because those values have been popped or because
those locations haven’t been used yet.

Questions:

• What are some advantages and disadvantages of each representation?

(Answer omitted; properties to consider: space, time for operations, flexibility)

• In your preferred language (or clear pseudocode), implement these operations:

– push for the linked list representation

– pop for the array representation

If the stack is empty then pop should signal an error. (If you don’t know how, writing
a comment that says “signal empty stack error here” is sufficient.) You may
assume that each structure or class has a constructor that takes all the fields and
stores them in the new object. Clearly state any other assumptions that you make.

Using C++, assuming classes named liststack and arraystack, and assuming that
element type is int.

10



void liststack::push(int element)

{

node *new_head = new node(element, this->head);

this->head = new_head;

}

int arraystack::pop()

{

if (this->size == 0) throw empty_stack_exception;

return this->data[--this->size];

}

11


