
Types, Values & Simple I/O
EECS 230

Spring 2016

Road map

• Strings and string I/O
• Integers and integer I/O
• Types and objects *
• Type safety

* Not as in object orientation—we’ll get to that much later.

2

Input and output

#include <eecs230.h>

int main()
{

cout << "Please enter your name: ";

string first_name;
cin >> first_name;

cout << "Hello, " << first_name << '\n';
}

3

Header files

#include <eecs230.h>

Includes our course header file, which provides an interface to
libraries, into your program

4

Input and type

string first_name;
cin >> first_name;

• We declare a variable first_name to have type string
▶ This means that first_name can hold textual data
▶ The type of the variable determines what we can do with it

• Here, cin>>first_name; reads characters until it sees
whitespace (“a word”)

5

Reading multiple words

int main()
{

cout << ”Please enter your first and second names:\n”;

string first;
string second;
cin >> first >> second;
string name = first + ' ' + second;

cout << "Hello, " << first << ' ' << second << '\n';
}

Fine print: left out the include, since every program will have that from now on

6

Syntax of cin

cin >> a >> b;

means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

• cin >> a returns a reference to cin
• cin >> a >> b means (cin >> a) >> b
• i.e., operator>> is left associative
• (same deal for cout and operator<<)

7

Syntax of cin

cin >> a >> b;

means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC?

No, because

• cin >> a returns a reference to cin
• cin >> a >> b means (cin >> a) >> b
• i.e., operator>> is left associative
• (same deal for cout and operator<<)

7

Syntax of cin

cin >> a >> b;

means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

• cin >> a returns a reference to cin

• cin >> a >> b means (cin >> a) >> b
• i.e., operator>> is left associative
• (same deal for cout and operator<<)

7

Syntax of cin

cin >> a >> b;

means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

• cin >> a returns a reference to cin
• cin >> a >> b means (cin >> a) >> b

• i.e., operator>> is left associative
• (same deal for cout and operator<<)

7

Syntax of cin

cin >> a >> b;

means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

• cin >> a returns a reference to cin
• cin >> a >> b means (cin >> a) >> b
• i.e., operator>> is left associative

• (same deal for cout and operator<<)

7

Syntax of cin

cin >> a >> b;

means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

• cin >> a returns a reference to cin
• cin >> a >> b means (cin >> a) >> b
• i.e., operator>> is left associative
• (same deal for cout and operator<<)

7

Reading integers

int main()
{

cout << ”Please enter your first name and age:\n”;

string first_name;
int age;
cin >> first_name >> age;

cout << "Hello, " << first_name << ", age "
<< age << '\n';

}

8

Integers and numbers

string s int x or double x

cin >> s reads a word cin >> x reads a number
cout << s writes cout << x writes
s1 + s2 concatenates x1 + x2 adds
++s is an error ++x increments in place

The type of a variable determines

• what operations are valid
• and what they mean for that type

9

Integers and numbers

string s int x or double x
cin >> s reads a word cin >> x reads a number

cout << s writes cout << x writes
s1 + s2 concatenates x1 + x2 adds
++s is an error ++x increments in place

The type of a variable determines

• what operations are valid
• and what they mean for that type

9

Integers and numbers

string s int x or double x
cin >> s reads a word cin >> x reads a number
cout << s writes cout << x writes

s1 + s2 concatenates x1 + x2 adds
++s is an error ++x increments in place

The type of a variable determines

• what operations are valid
• and what they mean for that type

9

Integers and numbers

string s int x or double x
cin >> s reads a word cin >> x reads a number
cout << s writes cout << x writes
s1 + s2 concatenates x1 + x2 adds

++s is an error ++x increments in place

The type of a variable determines

• what operations are valid
• and what they mean for that type

9

Integers and numbers

string s int x or double x
cin >> s reads a word cin >> x reads a number
cout << s writes cout << x writes
s1 + s2 concatenates x1 + x2 adds
++s is an error ++x increments in place

The type of a variable determines

• what operations are valid
• and what they mean for that type

9

Integers and numbers

string s int x or double x
cin >> s reads a word cin >> x reads a number
cout << s writes cout << x writes
s1 + s2 concatenates x1 + x2 adds
++s is an error ++x increments in place

The type of a variable determines

• what operations are valid
• and what they mean for that type

9

Names, a/k/a identifiers
A legal name in C++

• starts with a letter,

• contains only letters, digits, and underscores, and
• isn’t a language keyword (e.g., if).

Which of these names are illegal? Why?

• purple line

(space not allowed)

• number_of_bees
• jflsiejslf_
• else

(keyword)

• timetomarket

(bad punctuation)

• Fourier_transform
• 12x

(starts with a digit)

• y2

10

Names, a/k/a identifiers
A legal name in C++

• starts with a letter,
• contains only letters, digits, and underscores, and

• isn’t a language keyword (e.g., if).

Which of these names are illegal? Why?

• purple line

(space not allowed)

• number_of_bees
• jflsiejslf_
• else

(keyword)

• timetomarket

(bad punctuation)

• Fourier_transform
• 12x

(starts with a digit)

• y2

10

Names, a/k/a identifiers
A legal name in C++

• starts with a letter,
• contains only letters, digits, and underscores, and
• isn’t a language keyword (e.g., if).

Which of these names are illegal? Why?

• purple line

(space not allowed)

• number_of_bees
• jflsiejslf_
• else

(keyword)

• timetomarket

(bad punctuation)

• Fourier_transform
• 12x

(starts with a digit)

• y2

10

Names, a/k/a identifiers
A legal name in C++

• starts with a letter,
• contains only letters, digits, and underscores, and
• isn’t a language keyword (e.g., if).

Which of these names are illegal? Why?

• purple line

(space not allowed)

• number_of_bees
• jflsiejslf_
• else

(keyword)

• timetomarket

(bad punctuation)

• Fourier_transform
• 12x

(starts with a digit)

• y2
10

Names, a/k/a identifiers
A legal name in C++

• starts with a letter,
• contains only letters, digits, and underscores, and
• isn’t a language keyword (e.g., if).

Which of these names are illegal? Why?

• purple line (space not allowed)
• number_of_bees
• jflsiejslf_
• else (keyword)
• timetomarket (bad punctuation)
• Fourier_transform
• 12x (starts with a digit)
• y2

10

Also, don’t start a name with an underscore

The compiler might allow it, but technically such names are
reserved for the system

11

Choose meaningful names

• Abbreviations and acronyms can be confusing: myw, bamf,
TLA

• Very short names are meaningful only when there’s a
convention:

▶ x is a local variable
▶ n is an int
▶ i is a loop index

• The length of a name should be proportional to its scope
• Don’t use overly long names

▶ Good:
▶ partial_sum
▶ element_count

▶ Bad:
▶ the_number_of_elements
▶ remaining_free_slots_in_the_symbol_table

12

Choose meaningful names

• Abbreviations and acronyms can be confusing: myw, bamf,
TLA

• Very short names are meaningful only when there’s a
convention:

▶ x is a local variable
▶ n is an int
▶ i is a loop index

• The length of a name should be proportional to its scope
• Don’t use overly long names

▶ Good:
▶ partial_sum
▶ element_count

▶ Bad:
▶ the_number_of_elements
▶ remaining_free_slots_in_the_symbol_table

12

Choose meaningful names

• Abbreviations and acronyms can be confusing: myw, bamf,
TLA

• Very short names are meaningful only when there’s a
convention:

▶ x is a local variable
▶ n is an int
▶ i is a loop index

• The length of a name should be proportional to its scope

• Don’t use overly long names

▶ Good:
▶ partial_sum
▶ element_count

▶ Bad:
▶ the_number_of_elements
▶ remaining_free_slots_in_the_symbol_table

12

Choose meaningful names

• Abbreviations and acronyms can be confusing: myw, bamf,
TLA

• Very short names are meaningful only when there’s a
convention:

▶ x is a local variable
▶ n is an int
▶ i is a loop index

• The length of a name should be proportional to its scope
• Don’t use overly long names

▶ Good:
▶ partial_sum
▶ element_count

▶ Bad:
▶ the_number_of_elements
▶ remaining_free_slots_in_the_symbol_table

12

Choose meaningful names

• Abbreviations and acronyms can be confusing: myw, bamf,
TLA

• Very short names are meaningful only when there’s a
convention:

▶ x is a local variable
▶ n is an int
▶ i is a loop index

• The length of a name should be proportional to its scope
• Don’t use overly long names

▶ Good:
▶ partial_sum
▶ element_count

▶ Bad:
▶ the_number_of_elements
▶ remaining_free_slots_in_the_symbol_table

12

Choose meaningful names

• Abbreviations and acronyms can be confusing: myw, bamf,
TLA

• Very short names are meaningful only when there’s a
convention:

▶ x is a local variable
▶ n is an int
▶ i is a loop index

• The length of a name should be proportional to its scope
• Don’t use overly long names

▶ Good:
▶ partial_sum
▶ element_count

▶ Bad:
▶ the_number_of_elements
▶ remaining_free_slots_in_the_symbol_table

12

Simple arithmetic

int main()
{

cout << "Please enter a floating-point number: ";

double f;
cin >> f;

cout << "f == " << f
<< "\nf + 1 == " << f + 1
<< "\n2f == " << 2 ∗ f
<< "\n3f == " << 3 ∗ f
<< "\nf² == " << f ∗ f
<< "\n√f == " << sqrt(f) << '\n';

}

13

A simple computation

int main()
{

double r;

cout << "Please enter the radius: ";
cin >> r;

double c = 2 ∗ M_PI ∗ r;
cout << "Circumference is " << c << '\n';

}

14

Types and literals

type bits * literals

bool 1 † true, false
char 8 'a', 'B', '4', '/'
int 32 or 64 0, 1, 765, -6, 0xCAFE
long 64 0L, 1L, 10000000000L
double 64 0.0, 1.2, -0.765, -6e15
string varies "Hello, world!" ‡

* on current architectures

† stored as 8 bits
‡ actually has type const char[], but converts automatically to string

15

Types and literals

type bits * literals
bool 1 † true, false

char 8 'a', 'B', '4', '/'
int 32 or 64 0, 1, 765, -6, 0xCAFE
long 64 0L, 1L, 10000000000L
double 64 0.0, 1.2, -0.765, -6e15
string varies "Hello, world!" ‡

* on current architectures
† stored as 8 bits

‡ actually has type const char[], but converts automatically to string

15

Types and literals

type bits * literals
bool 1 † true, false
char 8 'a', 'B', '4', '/'

int 32 or 64 0, 1, 765, -6, 0xCAFE
long 64 0L, 1L, 10000000000L
double 64 0.0, 1.2, -0.765, -6e15
string varies "Hello, world!" ‡

* on current architectures
† stored as 8 bits

‡ actually has type const char[], but converts automatically to string

15

Types and literals

type bits * literals
bool 1 † true, false
char 8 'a', 'B', '4', '/'
int 32 or 64 0, 1, 765, -6, 0xCAFE

long 64 0L, 1L, 10000000000L
double 64 0.0, 1.2, -0.765, -6e15
string varies "Hello, world!" ‡

* on current architectures
† stored as 8 bits

‡ actually has type const char[], but converts automatically to string

15

Types and literals

type bits * literals
bool 1 † true, false
char 8 'a', 'B', '4', '/'
int 32 or 64 0, 1, 765, -6, 0xCAFE
long 64 0L, 1L, 10000000000L

double 64 0.0, 1.2, -0.765, -6e15
string varies "Hello, world!" ‡

* on current architectures
† stored as 8 bits

‡ actually has type const char[], but converts automatically to string

15

Types and literals

type bits * literals
bool 1 † true, false
char 8 'a', 'B', '4', '/'
int 32 or 64 0, 1, 765, -6, 0xCAFE
long 64 0L, 1L, 10000000000L
double 64 0.0, 1.2, -0.765, -6e15

string varies "Hello, world!" ‡

* on current architectures
† stored as 8 bits

‡ actually has type const char[], but converts automatically to string

15

Types and literals

type bits * literals
bool 1 † true, false
char 8 'a', 'B', '4', '/'
int 32 or 64 0, 1, 765, -6, 0xCAFE
long 64 0L, 1L, 10000000000L
double 64 0.0, 1.2, -0.765, -6e15
string varies "Hello, world!" ‡

* on current architectures
† stored as 8 bits
‡ actually has type const char[], but converts automatically to string

15

Types

• C++ provides built-in types:
▶ bool
▶ (unsigned or signed) char
▶ (unsigned) short
▶ (unsigned) int
▶ (unsigned) long
▶ float
▶ double

• C++ programmers can define new types
▶ called “user-defined types”
▶ you’ll learn to define your own soon

• The C++ standard library (STL) provides types
▶ e.g., ‹string›, ‹vector›, ‹complex›
▶ technically these are user-defined, but they come with C++

16

Types

• C++ provides built-in types:
▶ bool
▶ (unsigned or signed) char
▶ (unsigned) short
▶ (unsigned) int
▶ (unsigned) long
▶ float
▶ double

• C++ programmers can define new types
▶ called “user-defined types”
▶ you’ll learn to define your own soon

• The C++ standard library (STL) provides types
▶ e.g., ‹string›, ‹vector›, ‹complex›
▶ technically these are user-defined, but they come with C++

16

Types

• C++ provides built-in types:
▶ bool
▶ (unsigned or signed) char
▶ (unsigned) short
▶ (unsigned) int
▶ (unsigned) long
▶ float
▶ double

• C++ programmers can define new types
▶ called “user-defined types”
▶ you’ll learn to define your own soon

• The C++ standard library (STL) provides types
▶ e.g., ‹string›, ‹vector›, ‹complex›
▶ technically these are user-defined, but they come with C++

16

Objects

• An object is some memory that can hold a value (of some
particular type)

• A variable is a named object
• A declaration names an object
• A initialization fills in the initial value of a variable

17

Objects

• An object is some memory that can hold a value (of some
particular type)

• A variable is a named object

• A declaration names an object
• A initialization fills in the initial value of a variable

17

Objects

• An object is some memory that can hold a value (of some
particular type)

• A variable is a named object
• A declaration names an object

• A initialization fills in the initial value of a variable

17

Objects

• An object is some memory that can hold a value (of some
particular type)

• A variable is a named object
• A declaration names an object
• A initialization fills in the initial value of a variable

17

Declaration and initialization

int a;

a:

-2340024

int b = 9; b: 9
auto c = 'z'; // c is a char c: ‘z’
double x = 6.7; x: 6.7
string s = "hello!"; s: 6 “hello!”
string t; t: 0 “”

18

Declaration and initialization

int a; a:

-2340024
int b = 9; b: 9
auto c = 'z'; // c is a char c: ‘z’
double x = 6.7; x: 6.7
string s = "hello!"; s: 6 “hello!”
string t; t: 0 “”

18

Declaration and initialization

int a; a: -2340024

int b = 9; b: 9
auto c = 'z'; // c is a char c: ‘z’
double x = 6.7; x: 6.7
string s = "hello!"; s: 6 “hello!”
string t; t: 0 “”

18

Declaration and initialization

int a; a: -2340024
int b = 9; b: 9

auto c = 'z'; // c is a char c: ‘z’
double x = 6.7; x: 6.7
string s = "hello!"; s: 6 “hello!”
string t; t: 0 “”

18

Declaration and initialization

int a; a: -2340024
int b = 9; b: 9
auto c = 'z'; // c is a char c: ‘z’

double x = 6.7; x: 6.7
string s = "hello!"; s: 6 “hello!”
string t; t: 0 “”

18

Declaration and initialization

int a; a: -2340024
int b = 9; b: 9
auto c = 'z'; // c is a char c: ‘z’
double x = 6.7; x: 6.7

string s = "hello!"; s: 6 “hello!”
string t; t: 0 “”

18

Declaration and initialization

int a; a: -2340024
int b = 9; b: 9
auto c = 'z'; // c is a char c: ‘z’
double x = 6.7; x: 6.7
string s = "hello!"; s: 6 “hello!”

string t; t: 0 “”

18

Declaration and initialization

int a; a: -2340024
int b = 9; b: 9
auto c = 'z'; // c is a char c: ‘z’
double x = 6.7; x: 6.7
string s = "hello!"; s: 6 “hello!”
string t; t: 0 “”

18

Language rule: Type safety
Definition: In a type safe language, objects are used only
according to their types

• Only operations defined for an object will be applied to it
• A variable will be used only after it has been initialized
• Every operation defined for a variable leaves the variable with

a valid value

Ideal: Static type safety

• A program that violates type safety will not compile
• The compiler reports every violation

Ideal: Dynamic type safety

• An operation that violates type safety will not be run
• The program or run-time system catches every potential

violation

19

Language rule: Type safety
Definition: In a type safe language, objects are used only
according to their types

• Only operations defined for an object will be applied to it
• A variable will be used only after it has been initialized
• Every operation defined for a variable leaves the variable with

a valid value

Ideal: Static type safety

• A program that violates type safety will not compile
• The compiler reports every violation

Ideal: Dynamic type safety

• An operation that violates type safety will not be run
• The program or run-time system catches every potential

violation

19

Language rule: Type safety
Definition: In a type safe language, objects are used only
according to their types

• Only operations defined for an object will be applied to it
• A variable will be used only after it has been initialized
• Every operation defined for a variable leaves the variable with

a valid value

Ideal: Static type safety

• A program that violates type safety will not compile
• The compiler reports every violation

Ideal: Dynamic type safety

• An operation that violates type safety will not be run
• The program or run-time system catches every potential

violation

19

Language rule: Type safety
Definition: In a type safe language, objects are used only
according to their types

• Only operations defined for an object will be applied to it
• A variable will be used only after it has been initialized
• Every operation defined for a variable leaves the variable with

a valid value

Ideal: Static type safety

• A program that violates type safety will not compile
• The compiler reports every violation

Ideal: Dynamic type safety

• An operation that violates type safety will not be run
• The program or run-time system catches every potential

violation
19

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7

a = 9;

9

a = a + a;

18

a += 2;

20

++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9;

9
a = a + a;

18

a += 2;

20

++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9; 9

a = a + a;

18

a += 2;

20

++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9; 9
a = a + a;

18
a += 2;

20

++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9; 9
a = a + a; 18

a += 2;

20

++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9; 9
a = a + a; 18
a += 2;

20
++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9; 9
a = a + a; 18
a += 2; 20

++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9; 9
a = a + a; 18
a += 2; 20
++a;

21

20

Assignment and increment

The value of a variable may change.

a:
int a = 7; 7
a = 9; 9
a = a + a; 18
a += 2; 20
++a; 21

20

A type safety violation: implicit narrowing

Beware! C++ does not prevent you from putting a large value into
a small variable (though a compiler may warn)

int main()
{

int a = 20000;
char c = a;
int b = c;

if (a != b) // != means “not equal”
cout << "oops!: " << a << " != " << b << '\n';

else
cout << "Wow! We have large characters\n";

}

Try it to see what value b gets on your machine

21

A type-safety violation: uninitialized variables
Beware! C++ does not prevent you from trying to use a variable
before you have initialized it (though a compiler typically warns)

int main()
{

int x; // x gets a “random” initial value
char c; // c gets a “random” initial value
double d; // d gets a “random” initial value

// not every bit pattern is a valid floating-point value, and on some
// implementations copying an invalid float/double is an error:
double dd = d; // potential error: some implementations

// prints garbage:
cout << ” x: ” << x << ” c: ” << c << ” d: ” << d << ’\n’;

}

Always initialize your variables. Watch out: The debugger may
initialize variables that don’t get initialized when running normally

22

A type-safety violation: uninitialized variables
Beware! C++ does not prevent you from trying to use a variable
before you have initialized it (though a compiler typically warns)

int main()
{

int x; // x gets a “random” initial value
char c; // c gets a “random” initial value
double d; // d gets a “random” initial value

// not every bit pattern is a valid floating-point value, and on some
// implementations copying an invalid float/double is an error:
double dd = d; // potential error: some implementations

// prints garbage:
cout << ” x: ” << x << ” c: ” << c << ” d: ” << d << ’\n’;

}

Always initialize your variables. Watch out: The debugger may
initialize variables that don’t get initialized when running normally22

A technical detail

In memory, everything is just bits; type is what gives meaning to
the bits:

• (bits/binary) 01100001 is the int 97 and also char 'a'
• (bits/binary) 01000001 is the int 65 and also char 'A'
• (bits/binary) 00110000 is the int 48 and also char '0'

char c = 'a';
cout << c; // print the value of character c, which is ’a’
int i = c;
cout << i; // print the integer value of the character c, which is 97

23

A word on efficiency

For now, don’t worry about “efficiency”

• Concentrate on correctness and simplicity of code

C++ is derived from C, low-level programming language
• C++’s built-in types map directly to computer main memory

▶ a char is stored in a byte
▶ an int is stored in a word
▶ a double fits in a floating-point register

• C++’s built-in ops. map directly to machine instructions
▶ + on ints is implemented by an integer add operation
▶ = on ints is implemented by a simple copy operation
▶ C++ provides direct access to most of facilities provided by

modern hardware

24

A word on efficiency

For now, don’t worry about “efficiency”

• Concentrate on correctness and simplicity of code

C++ is derived from C, low-level programming language
• C++’s built-in types map directly to computer main memory

▶ a char is stored in a byte
▶ an int is stored in a word
▶ a double fits in a floating-point register

• C++’s built-in ops. map directly to machine instructions
▶ + on ints is implemented by an integer add operation
▶ = on ints is implemented by a simple copy operation
▶ C++ provides direct access to most of facilities provided by

modern hardware

24

A word on efficiency

For now, don’t worry about “efficiency”

• Concentrate on correctness and simplicity of code

C++ is derived from C, low-level programming language
• C++’s built-in types map directly to computer main memory

▶ a char is stored in a byte
▶ an int is stored in a word
▶ a double fits in a floating-point register

• C++’s built-in ops. map directly to machine instructions
▶ + on ints is implemented by an integer add operation
▶ = on ints is implemented by a simple copy operation
▶ C++ provides direct access to most of facilities provided by

modern hardware

24

A bit of philosophy

• One of the ways that programming resembles other kinds of
engineering is that it involves tradeoffs.

• You must have ideals, but they often conflict, so you must
decide what really matters for a given program.

▶ Type safety
▶ Run-time performance
▶ Ability to run on a given platform
▶ Ability to run on multiple platforms with same results
▶ Compatibility with other code and systems
▶ Ease of construction
▶ Ease of maintenance

• Don’t skimp on correctness or testing
• By default, aim for type safety and portability

25

