
Control Statements and
Functions

EECS 230

Winter 2018

Agenda

• Computation
▶ What is computable? How best to compute it?
▶ Abstractions, algorithms, heuristics, data structures

• Language constructs and ideas
▶ Sequential order of execution
▶ Expressions and statements
▶ Selection
▶ Iteration
▶ Functional abstraction

2

You already know most of this

• You know how to do arithmetic:
▶ d = a + b × c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you
already know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a + b × c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you
already know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a + b × c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you
already know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a + b × c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you
already know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a + b × c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you
already know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a + b × c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you
already know.

3

Computation: the big picture

(input) data code (output) data

data

• Input: from keyboard, files, mouse, other input devices, the
network, other programs

• Code: consumes the input and does something to produce
the output

• Output: to the screen, files, printer, other output devices,
the network, other programs

4

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:

• Divide and conquer
▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:

• Divide and conquer
▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:

• Divide and conquer
▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:

• Divide and conquer
▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:

• Divide and conquer
▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:

• Divide and conquer
▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization
5

Programming language features

Each language feature exists to express a fundamental idea:

+ addition
∗ multiplication
{ stm stm ... } sequencing
if (expr) stm else stm selection
while (expr) stm iteration
f(x); function call

The meaning of each feature is simple, but we combine them
into programs of arbitrary complexity.

6

Programming language features

Each language feature exists to express a fundamental idea:

+ addition
∗ multiplication
{ stm stm ... } sequencing
if (expr) stm else stm selection
while (expr) stm iteration
f(x); function call

The meaning of each feature is simple, but we combine them
into programs of arbitrary complexity.

6

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

What expressions are made of

Operators and operands

• operators specify what to do
• operands specify the data to do it to

Some common operators:

Operator(s) Meaning bool int double
+, −, ∗, / arithmetic Yes Yes
% remainder Yes
== equal Yes Yes Yes
!= not equal Yes Yes Yes
<, <=, >, >= comparisons Yes Yes
&&, || and, or Yes

8

What expressions are made of

Operators and operands

• operators specify what to do
• operands specify the data to do it to

Some common operators:

Operator(s) Meaning bool int double
+, −, ∗, / arithmetic Yes Yes
% remainder Yes
== equal Yes Yes Yes
!= not equal Yes Yes Yes
<, <=, >, >= comparisons Yes Yes
&&, || and, or Yes

8

Concise operators

For many binary operators, there are (roughly) equivalent more
concise versions:

a += c means a = a + c
a ∗= scale means a = a ∗ scale
++a means a += 1

or a = a + 1

Use them when they make your code clearer

9

Statements
A statement is one of:

• an expression followed by a semicolon,
• a declaration, or
• a control statement that determines control flow.

Examples:

• a = b;
• double d2 = 2.5;
• if (x == 2) y = 4;
• while (cin >> number) numbers.push_back(number);
• int average = (length + width) / 2;
• return x;

I don’t expect you to recognize all of these…yet.

10

Statements
A statement is one of:

• an expression followed by a semicolon,
• a declaration, or
• a control statement that determines control flow.

Examples:

• a = b;
• double d2 = 2.5;
• if (x == 2) y = 4;
• while (cin >> number) numbers.push_back(number);
• int average = (length + width) / 2;
• return x;

I don’t expect you to recognize all of these…yet.

10

Statements
A statement is one of:

• an expression followed by a semicolon,
• a declaration, or
• a control statement that determines control flow.

Examples:

• a = b;
• double d2 = 2.5;
• if (x == 2) y = 4;
• while (cin >> number) numbers.push_back(number);
• int average = (length + width) / 2;
• return x;

I don’t expect you to recognize all of these…yet.
10

Selection
Sometimes we must choose between alternatives.

For example, suppose we want to identify the larger of two
numbers. We can use an if statement:

if (a < b)
max = b;

else
max = a;

The syntax is

if (condition)
statement-if-true

else
statement-if-false

11

Selection
Sometimes we must choose between alternatives.

For example, suppose we want to identify the larger of two
numbers. We can use an if statement:

if (a < b)
max = b;

else
max = a;

The syntax is

if (condition)
statement-if-true

else
statement-if-false

11

Sequencing
What if you want to do more than one thing in an if?

Use a compound statement:

if (a < b) {
max = b;
min = a;

} else {
max = a;
min = b;

}

The syntax is

{
first-statement
second-statement
// etc.

}

12

Sequencing
What if you want to do more than one thing in an if?

Use a compound statement:

if (a < b) {
max = b;
min = a;

} else {
max = a;
min = b;

}

The syntax is

{
first-statement
second-statement
// etc.

}

12

Sequencing
What if you want to do more than one thing in an if?

Use a compound statement:

if (a < b) {
max = b;
min = a;

} else {
max = a;
min = b;

}

The syntax is

{
first-statement
second-statement
// etc.

} 12

Iteration (while)

int i = 0;

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i;

}

The syntax is

while (condition) statement

13

Iteration (while)

int i = 0;

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i;

}

The syntax is

while (condition) statement

13

Iteration (for)

int i = 0; // initialization

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i; // step

}

This pattern—a loop with initialization and step—is so common
that there’s special syntax for it:

for (int i = 0; i < 100; ++i)
cout << i << '\t' << square(i) << '\n';

for loops are the idiomatic way to count in C++

14

Iteration (for)

int i = 0; // initialization

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i; // step

}

This pattern—a loop with initialization and step—is so common
that there’s special syntax for it:

for (int i = 0; i < 100; ++i)
cout << i << '\t' << square(i) << '\n';

for loops are the idiomatic way to count in C++

14

Syntax of for

for (init-expr; cond-expr; step-expr)
body-stm

means

init-expr;

while (cond-expr) {
body-stm
step-expr;

}

15

Syntax of for

for (init-expr; cond-expr; step-expr)
body-stm

means

init-expr;

while (cond-expr) {
body-stm
step-expr;

}

15

Functions
But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

Why define a function? We want to separate and name a
computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

16

Functions
But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

Why define a function? We want to separate and name a
computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

16

Functions
But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

Why define a function?

We want to separate and name a
computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

16

Functions
But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

Why define a function? We want to separate and name a
computation because it…

• …is logically separate.

• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

16

Functions
But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

Why define a function? We want to separate and name a
computation because it…

• …is logically separate.
• …make the program clearer.

• …can be reused.
• …eases testing, distribution of labor, and maintenance.

16

Functions
But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

Why define a function? We want to separate and name a
computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.

• …eases testing, distribution of labor, and maintenance.

16

Functions
But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

Why define a function? We want to separate and name a
computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

16

A function example

int square(int n) {
return n ∗ n;

}

int main () {
cout << sqrt(square(3) + square(4)) << '\n';

}

17

A function example

int square(int n) {
return n ∗ n;

}

int main () {
double a2 = square(3);
double b2 = square(4);
double c2 = a2 + b2;
double c = sqrt(c2);
cout << c << '\n';

}

18

A function example

int main () {
double a2 = square(3);
double b2 = square(4);
double c2 = a2 + b2;
double c = sqrt(c2);
cout << c << '\n';

}

int square(int n) {
return n ∗ n;

}

19

A function example

int main () {
double a2 = square(3);

double b2 = square(4);

double c2 = a2 + b2;
double c = sqrt(c2);

cout << c << '\n';
}

int square(int n) {
return n ∗ n;

}

int square(int n) {
return n ∗ n;

}

double sqrt(double);

20

Function definition syntax

Our function

int square(int x)
{

return x ∗ x;
}

is an example of

return-type function-name(param-type param-name,…)
{

// code, which can use parameter(s) param-name, etc.
return some-value;

}

21

