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Kinds of errors

• Static (compile-time) errors
▶ Syntax errors
▶ Semantic (type) errors
▶ Linker errors

• Dynamic (run-time) errors
▶ Logic errors (bugs)
▶ User and environment errors
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Static versus dynamic errors

Static happens at build time
Dynamic happens at run time

Consequently, programs with static errors can’t be run!
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Syntax errors

When the program doesn’t have the correct form for a program.
Examples:

• Unmatches bracket or parenthesis
• Missing or extraneous semicolon
• A reserved word used where an identifier is required
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Semantic errors

When something doesn’t make sense. Examples:

• Calling a function that hasn’t been declared
• Calling a two-argument function with three arguments
• Using an int where a string is required
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Linker errors

When some promised definitions are still missing at the end of
the build process
(This will make more sense later)
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Logic errors

When the programmer gets something wrong. Examples:

• Integer divide-by-zero
• Array out-of-range error
• Crashes when attempting to render two tables side-by-side

7



User and environment errors

When the user does something wrong, or the environment isn’t
in the required state. Examples:

• Attempting to open a file that doesn’t exist
• The network being down
• Clicking in a modally-inactive window
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What should we do in case of error?

It depends:

Programmer errors All is lost! So probably crashing is best

*

User/env. errors Be user-friendly! Allow the user to recover

†

* unless it’s required to be robust (like a flight control system)
† unless the programmer is the user and the user doesn’t care
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Example logic error

// Computes the mean value of a vector
double mean(vector<double> sample)
{

double sum = 0;

for (double element : sample)
sum += element;

return sum / sample.size();
}

Now suppose mean is called with an empty vector…
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Whose job is it to prevent this?

Options:

• The author of mean (the service)

• The author of the code that calls mean (the client)
• Both!
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What the client should do

Try not to call mean with an empty vector!

If the empty data set is coming from the user (or a file), the client
should present an error message and allow the user to recover
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What the service should do

Several options:

• Just return nonsense
• Crash the program
• Throw an exception
• Declare a precondition (and one of the above)
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Just return nonsense!

// Computes the mean value of a vector
double mean(vector<double> sample)
{

double sum = 0;

for (double element : sample)
sum += element;

return sum / sample.size();
}

Pros:
• It’s fast
• It’s simple

Cons:
• Hard to debug
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Document the precondition and return nonsense

// Computes the mean value of a vector
// PRECONDITION: ! sample.empty()
double mean(vector<double> sample)
{

double sum = 0;
for (double element : sample) sum += element;
return sum / sample.size();

}

Pros:
• It’s fast
• It’s simple
• It’s clearer

Cons:
• Still hard to debug
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Crash the program

double mean(vector<double> sample)
{

if (sample.empty())
simple_error("empty sample has no mean");

double sum = 0;
for (double element : sample) sum += element;
return sum / sample.size();

}

Pros:
• Easier to debug
• Still pretty simple

Cons:
• What if client wants to

recover?
• Takes time to check

(maybe)
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Throw an exception

double mean(vector<double> sample)
{

if (sample.empty())
throw runtime_error("empty sample has no mean");

double sum = 0;
for (double element : sample) sum += element;
return sum / sample.size();

}

Pros:
• Easiest to debug
• Allows client to recover

Cons:
• Takes time to propagate
• More complicated
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Semantics of exceptions

— to CLion —
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