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Filter algorithm for n threads

template <int N>
class Filter_lock : public Lock_base
{

int level_[N] = {};
int waiting_[N];

bool exists_competition(int level)
{

for (auto k : thread::all_ids())
if (k != i() && level_[k] >= level)

return true;
return false;

}
...

}
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template <int N>
class Filter_lock : public Lock_base
{
...
public:

virtual void lock() override
{

for (int level = 1; level < N; ++level) {
level_[i()] = level;
waiting_[level] = i();
while (exists_competition(level) &&

waiting_[level] == i()) {}
}

}

virtual void unlock() override
{ level_[i()] = 0; }

}
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Filter lock properties

• Mutual exclusion
▶ By induction, one thread gets stuck in each level...

• Deadlock freedom
▶ Like Peterson—only one thread can wait per level

• Starvation freedom
▶ Like Peterson—every thread advances if any does

• Fairness?
▶ No—threads can overtake others
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Bounded waiting

Idea: If thread A “starts before” B, then A enters CS before B.

But what is “starts before”?
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Bounded waiting

Divide lock() operation into two intervals:

• Doorway (DA), finite steps
• Waiting (WA), possibly unbounded

r-Bounded Waiting Guarantee: If Dk
A → Dj

B, then CSk
A → CSj+r

B .
“If A enters the doorway for the kth time before B enters it for the
jth time, then A’s kth critical section happens before B’s (j+ r)th
critical section.”
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r-Bounded waiting

• Peterson’s Algorithm (for 2) has r = 0 (first-come-first-served)
• Filter algorithm (for n) has r = ∞

• Bakery algorithm (for n) has has r = 0 (first-come-first-served)
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Helper class: lexicographically-ordered pairs

template <typename A, typename B>
struct LP
{

A x;
B y;

};

template <typename A, typename B>
bool operator>(const LP<A, B> & p,

const LP<A, B> & q)
{

return p.x > q.x || (p.x == q.x && p.y > q.y);
}
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Bakery algorithm for n threads

template <int N>
class Bakery_lock : public Lock_base
{

bool flag_[N] = {false};
int label_[N] = {0};
int max_label_ = 0;

bool someone_is_ahead()
{

for (auto k : thread::all_ids())
if (flag_[k] && LP{label_[i()], i()} > LP{label_[k], k})

return true;
return false;

}
...

}
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template <int N>
class Bakery_lock : public Lock_base
{
...
public:

virtual void lock() override
{

flag_[i()] = true;
label_[i()] = ++max_label_;
while (someone_is_ahead()) {}

}

virtual void unlock() override
{ flag_[i()] = false; }

}
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Bakery Y232K bug

Does overflow matter?
Bits Does it?
16 quite
32 maybe
64 no
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Bakery lock properties

• Mutual exclusion
▶ Between any two (label[k], k) pairs, one will defer to the
other…

• Deadlock freedom
▶ Must be some least (label[k], k) pair

• Starvation freedom
▶ No thread takes the same number twice

• First-come-first-served (0-bounded waiting)
▶ First through the door has lower label, goes first

• Practical?
▶ Have to readh n variables to lock
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“Registers” (shared memory locations)

Flavors:

• Multi-reader/single-writer (flag[])
• Multi-reader/multi-writer (waiting)
• (Not that interesting: SRMW and SRSW)
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Theorem

At least n MRSW (multi-reader/single-writer) registers are needed
to solve deadlock-free mutual exclusion.

Proof sketch. For n = 2, one register is insufficient because
neither thread necessarily sees the other’s write. Then by
induction, the record of the first thread to enter always gets
obliterated by the rest.

14



Theorem

At least n MRSW (multi-reader/multi-writer) registers are needed
to solve deadlock-free mutual exclusion.

Proof sketch. For n = 2, one register is insufficient because
neither thread necessarily sees the other’s write. Then by
induction, the record of the first thread to enter always gets
obliterated by the rest.

14



Theorem

At least n MRMW (multi-reader/multi-writer) registers are needed
to solve deadlock-free mutual exclusion.

Proof sketch. For n = 2, one register is insufficient because
neither thread necessarily sees the other’s write. Then by
induction, the record of the first thread to enter always gets
obliterated by the rest.

14



Theorem

At least n MRMW (multi-reader/multi-writer) registers are needed
to solve deadlock-free mutual exclusion.
Proof sketch. For n = 2, one register is insufficient because
neither thread necessarily sees the other’s write. Then by
induction, the record of the first thread to enter always gets
obliterated by the rest.

14



Summary

For deadlock-free mutual exclusion of n threads:

• Best known algorithm uses 2n MRSW registers
• Lower bound for MRMW is n

O(n) reads is too inefficient—we need something better, and we’ll
get it from the hardware
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This work is licensed under a Creative Commons “Attribution-ShareAlike 3.0 Unported”
license.
These slides are derived from the companion slides for The Art of Multiprocessor
Programming, by Maurice Herlihy and Nir Shavit. Its original license reads:

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5
License.

• You are free:
▶ to Share — to copy, distribute and transmit the work
▶ to Remix — to adapt the work

• Under the following conditions:
▶ Attribution. You must attribute the work to “The Art of Multiprocessor Programming”

(but not in any way that suggests that the authors of that work or this endorse you or
your use of the work).

▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link to

▶ http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from
the copyright holder.

• Nothing in this license impairs or restricts the author’s moral rights.
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