
Concurrent Objects and
Linearizability
EECS 3/495 “Rust”

Spring 2017

What is a concurrent object?

• How do we describe one?
• How do we implement one?
• How do we tell if we’re right?

2

What is a concurrent object?

• How do we describe one?

• How do we implement one?

• How do we tell if we’re right?

2

Case study: FIFO queue

q = 2 4

6

q.enq(6)
q.deq() ⇒ 2

3

Case study: FIFO queue

q = 2 4

6

q.enq(6)

q.deq() ⇒ 2

3

Case study: FIFO queue

q = 2 4 6

q.enq(6)

q.deq() ⇒ 2

3

Case study: FIFO queue

q = 2 4 6

q.enq(6)
q.deq()

⇒ 2

3

Case study: FIFO queue

q =

2

4 6

q.enq(6)
q.deq() ⇒ 2

3

Implementation: Lock-based ring buffer

#include <array>

template <typename Element, int capacity>
class Lock_based_FIFO
{
public:

void enq(Element);
Element deq();

private:
std::array<Element, capacity> data_;
unsigned head_ = 0, tail_ = 0;
Lock lock_;

};

4

Implementation: Lock-based enqueue

template <typename Element, int capacity>
void Lock_based_FIFO<Element, capacity>::enq(Element x)
{

LockGuard guard(lock_);

if (tail_ − head_ == capacity) throw fifo_full();

data_[tail_++ % capacity] = x;
}

5

Implementation: Lock-based dequeue

template <typename Element, int capacity>
Element Lock_based_FIFO<Element, capacity>::deq()
{

LockGuard guard(lock_);

if (tail_ == head_) throw fifo_empty();

return data_[head_++ % capacity];
}

6

Now consider this

Same thing, but:

• no mutual exclusion
• only two threads:

▶ one only enqueues
▶ one only dequeues

7

Wait-free SRSW FIFO

#include <array>
#include <atomic>

template <typename Element, int capacity>
class Wf_SRSW_FIFO
{
public:

void enq(Element);
Element deq();

private:
std::array<Element, capacity> data_;
std::atomic<unsigned long> head_{0}, tail_{0};

};

8

Wait-free SRSW enqueue

template <typename Element, int capacity>
void Wf_SRSW_FIFO<Element, capacity>::enq(Element x)
{

if (tail_ − head_ == capacity) throw fifo_full();

data_[tail_ % capacity] = x;
++tail_;

}

9

Wait-free SRSW deque

template <typename Element, int capacity>
Element Wf_SRSW_FIFO<Element, capacity>::deq()
{

if (tail_ == head_) throw fifo_empty();

Element result = data_[head_ % capacity];
++head_;
return result;

}

10

What is a concurrent queue?

• Need a way to specify a concurrent queue object
• Need a way to prove that an algorithm implements the spec

How do we specify objects?

11

What is a concurrent queue?

• Need a way to specify a concurrent queue object
• Need a way to prove that an algorithm implements the spec

How do we specify objects?

11

Object specification

In a concurrent setting:

• it gets the right answer (correctness, a safety property)
• it doesn’t get stuck (progress, a liveness property)

Let’s start with correctness.

12

Sequential objects

Each object has:

• a state:
▶ fields, usually
▶ FIFO example: the sequence of elements

• a set of methods:
▶ only way to access/manipulate the state
▶ FIFO example: enq and deq methods

13

Sequential specification

• If (precondition)
▶ the object is in such-and-such a state
▶ before you call the method,

• then (postcondition)
▶ the method will return a particular value
▶ or throw a particular exception

• and (postcondition)
▶ the object will be in some specified state
▶ when the method returns.

14

Sequential specification

• If (precondition)
▶ the object is in such-and-such a state
▶ before you call the method,

• then (postcondition)
▶ the method will return a particular value
▶ or throw a particular exception

• and (postcondition)
▶ the object will be in some specified state
▶ when the method returns.

14

Sequential specification

• If (precondition)
▶ the object is in such-and-such a state
▶ before you call the method,

• then (postcondition)
▶ the method will return a particular value
▶ or throw a particular exception

• and (postcondition)
▶ the object will be in some specified state
▶ when the method returns.

14

Example sequential specification: dequeue

• Precondition:
▶ queue state is x1, x2, . . . , xk for k ≥ 1

• Postcondition:
▶ returns x1

• Postcondition:
▶ queue state is x2, . . . , xk

Easy!

15

Example sequential specification: dequeue

• Precondition:
▶ queue state is x1, x2, . . . , xk for k ≥ 1

• Postcondition:
▶ returns x1

• Postcondition:
▶ queue state is x2, . . . , xk

Easy!

15

Example sequential specification: dequeue

• Precondition:
▶ queue is empty

• Postcondition:
▶ throws fifo_empty exception

• Postcondition:
▶ state is unchanged

Easy!

16

Sequential specifications are awesome!

• All method interactions captures by side-effects on state
• Each method described in isolation
• Can add new methods easily

What about concurrent specification?

17

Sequential specifications are awesome!

• All method interactions captures by side-effects on state
• Each method described in isolation
• Can add new methods easily

What about concurrent specification?

17

Complication: methods take time

• Sequential: what is time? who cares?
• Concurrent: method call is interval, not event

• Sequential: invariants must hold between calls
• Concurrent: overlapping means might never be between
calls

18

Complication: methods take overlapping time

• Sequential: what is time? who cares?
• Concurrent: method call is interval, not event

• Sequential: invariants must hold between calls
• Concurrent: overlapping means might never be between
calls

18

The Big Question

What does it mean for a concurrent object to be correct?

Or, what is a concurrent FIFO queue?

• FIFO means stuff happens in order
• concurrent means time/order is kinda ambiguous

19

The Big Question

What does it mean for a concurrent object to be correct?

Or, what is a concurrent FIFO queue?

• FIFO means stuff happens in order
• concurrent means time/order is kinda ambiguous

19

The Big Question

What does it mean for a concurrent object to be correct?

Or, what is a concurrent FIFO queue?

• FIFO means stuff happens in order
• concurrent means time/order is kinda ambiguous

19

Intuitively…

template <typename Element, int capacity>
void Lock_based_FIFO<Element, capacity>::enq(Element x) {

LockGuard guard(lock_);
if (tail_ − head_ == capacity) throw fifo_full();
data_[tail_++ % capacity] = x;

}

template <typename Element, int capacity>
Element Lock_based_FIFO<Element, capacity>::deq() {

LockGuard guard(lock_);
if (tail_ == head_) throw fifo_empty();
return data_[head_++ % capacity];

}

Mutual exclusion means we can describe the behavior
sequentially

20

Intuitively…

template <typename Element, int capacity>
void Lock_based_FIFO<Element, capacity>::enq(Element x) {

LockGuard guard(lock_);
if (tail_ − head_ == capacity) throw fifo_full();
data_[tail_++ % capacity] = x;

}

template <typename Element, int capacity>
Element Lock_based_FIFO<Element, capacity>::deq() {

LockGuard guard(lock_);
if (tail_ == head_) throw fifo_empty();
return data_[head_++ % capacity];

}

Mutual exclusion means we can describe the behavior
sequentially

20

Linearizability

• Each method “takes effect” “instantaneously” between
invocation and response events

• Object is correct if this “sequential” behavior is correct

Such a concurrent object is linearizable

21

Linearizability

• Each method “takes effect” “instantaneously” between
invocation and response events

• Object is correct if this “sequential” behavior is correct

Such a concurrent object is linearizable

21

Is linearizability really obout the object?

A linearizable object: all of its possible executions are linearizable
(Linearizable execution examples on board)

22

Formal model of executions

Split method call into two events:

Invocation A q.enq(x) Thread A calls q.enq(x)
Response A q:void Result is void

23

Definition: History

Thread projection:

H

|B

=

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

24

Definition: History

Object projection:

H|q =

A q.enq(3)
A q:void

B p.enq(4)
B p:void

B q.deq()
B q:3

24

Definition: History

Thread projection:

H|B =

A q.enq(3)
A q:void

B p.enq(4)
B p:void
B q.deq()
B q:3

24

Definition: History

Thread projection:

H

|B

=

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

24

Complete subhistories

Remove pending invocations:

Complete(

H

)

=

A q.enq(3)
A q:void
A q.deq()
B p.enq(4)
B p:void
B q.deq()
B q:3

25

Complete subhistories

Remove pending invocations:

Complete(H) =

A q.enq(3)
A q:void

A q.deq()

B p.enq(4)
B p:void
B q.deq()
B q:3

25

Sequential subhistories

Responses immediately follow invocations (except possibly a final
invocation):

H =

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q.deq()

26

History well-formedness

H =

A q.enq(3)
B p.enq(4)
B p:void
B q:deq()
A q:void
B q:3

H is well formed if its thread projections are sequential:

H|A =
A q.enq(3)
A q:void H|B =

B p.enq(4)
B p:void
B q.deq()
B q:3

27

History well-formedness

H =

A q.enq(3)
B p.enq(4)
B p:void
B q:deq()
A q:void
B q:3

H is well formed if its thread projections are sequential:

H|A =
A q.enq(3)
A q:void H|B =

B p.enq(4)
B p:void
B q.deq()
B q:3

27

History well-formedness

H =

A q.enq(3)
B p.enq(4)
B p:void
B q:deq()
A q:void
B q:3

H is well formed if its thread projections are sequential:

H|A =
A q.enq(3)
A q:void H|B =

B p.enq(4)
B p:void
B q.deq()
B q:3

27

History equivalence

H =

A q.enq(3)
B p.enq(4)
B p:void
B q:deq()
A q:void
B q:3

G =

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q:deq()
B q:3

G ∼ H iff threads see the same things:

H|A = G|A
H|B = G|B

28

History equivalence

H =

A q.enq(3)
B p.enq(4)
B p:void
B q:deq()
A q:void
B q:3

G =

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q:deq()
B q:3

G ∼ H iff threads see the same things:

H|A = G|A
H|B = G|B

28

Sequential specification

A sequential specification describes a legal single-thread,
single-object history

A grammar for (unbounded) FIFO histories:

H ::= Hϵ

Hx1,...,xk ::=
Hx1,...,xk ::= q.enq(x); q:void; Hx1,...,xk,x

Hx0,x1,...,xk ::= q.deq(); q:x0; Hx1,...,xk

29

Sequential specification

A sequential specification describes a legal single-thread,
single-object history

A grammar for (unbounded) FIFO histories:

H ::= Hϵ

Hx1,...,xk ::=
Hx1,...,xk ::= q.enq(x); q:void; Hx1,...,xk,x

Hx0,x1,...,xk ::= q.deq(); q:x0; Hx1,...,xk

29

Legal histories

A sequential (multi-object, multi-thread) history H is legal if:

For every object x, H|x is in the sequential spec for x.

30

Precedence

A method call c precedes a method call d if c’s response comes
before d’s invocation

Example:
A q.enq(3)
B p.enq(4)
B p:void
A q:void
B q.deq()
B q:3

• Method call A q.enq(3) precedes method call B q.deq()
• Method call A q.enq(4) precedes method call B q.deq()
• Method call A q.enq(3) does not precede method call B
q.enq(4)

31

Precedence

A method call c precedes a method call d if c’s response comes
before d’s invocation
Example:

A q.enq(3)
B p.enq(4)
B p:void
A q:void
B q.deq()
B q:3

• Method call A q.enq(3) precedes method call B q.deq()
• Method call A q.enq(4) precedes method call B q.deq()
• Method call A q.enq(3) does not precede method call B
q.enq(4)

31

Properties of precedence

• In general, it’s a partial order
• For a sequential history, it’s a total order

Have we seen this before?

Yes: Precedence is happens-before (→) for method call intervals

32

Properties of precedence

• In general, it’s a partial order
• For a sequential history, it’s a total order

Have we seen this before?
Yes: Precedence is happens-before (→) for method call intervals

32

Linearizability, formally

History H is linearizable if it can be extended to complete history
G by

• appending responses to some pending invocations, and/or
• discarding the remaining pending invocations

such that there exists some legal sequential history S ∼ G where
→H ⊆ →S

33

Example

H =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q.enq(6)

G =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

S =

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

• S is legal and sequential
• S ∼ G
• →H ⊆ →S

34

Example

H =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q.enq(6)

G =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

S =

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

• S is legal and sequential
• S ∼ G
• →H ⊆ →S

34

Example

H =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q.enq(6)

G =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

S =

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

• S is legal and sequential
• S ∼ G
• →H ⊆ →S

34

Example

H =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q.enq(6)

G =

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

S =

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

• S is legal and sequential
• S ∼ G
• →H ⊆ →S

34

Composability theorem

History H is linearizable if for every object x, H|x is linearizable

This means we can reason about objects independently

35

Composability theorem

History H is linearizable if for every object x, H|x is linearizable

This means we can reason about objects independently

35

This work is licensed under a Creative Commons “Attribution-ShareAlike 3.0 Unported”
license.
These slides are derived from the companion slides for The Art of Multiprocessor
Programming, by Maurice Herlihy and Nir Shavit. Its original license reads:

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5
License.

• You are free:
▶ to Share — to copy, distribute and transmit the work
▶ to Remix — to adapt the work

• Under the following conditions:
▶ Attribution. You must attribute the work to “The Art of Multiprocessor Programming”

(but not in any way that suggests that the authors of that work or this endorse you or
your use of the work).

▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link to

▶ http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from
the copyright holder.

• Nothing in this license impairs or restricts the author’s moral rights.

36

http://creativecommons.org/licenses/by-sa/3.0/

