
Building a Better List-Set
EECS 3/495 “Rust”

Spring 2017

Can we do better?

Coarse-grained synchronization:

• Lock the whole object for each operation

• Easy to reason about :-)
• But sequential bottleneck :-(

2

Can we do better?

Coarse-grained synchronization:

• Lock the whole object for each operation
• Easy to reason about :-)

• But sequential bottleneck :-(

2

Can we do better?

Coarse-grained synchronization:

• Lock the whole object for each operation
• Easy to reason about :-)
• But sequential bottleneck :-(

2

Four strategies

1. Fine-grained synchronization

:-) Can synchronize on different parts of object concurrently
:-(But lots of locking/unlocking overhead

2. Optimistic synchronization
:-) No need to lock while traversing
:-(But need to validate, and may require expensive retries

3. Lazy synchronization
:-) Less work needed than optimisitic synchronization
:-(But contended operations still need to retry

4. Lock-free synchronization
:-) No longer at the mercy of the scheduler
:-(But complex, and maybe high overhead

3

Four strategies

1. Fine-grained synchronization
:-) Can synchronize on different parts of object concurrently

:-(But lots of locking/unlocking overhead
2. Optimistic synchronization

:-) No need to lock while traversing
:-(But need to validate, and may require expensive retries

3. Lazy synchronization
:-) Less work needed than optimisitic synchronization
:-(But contended operations still need to retry

4. Lock-free synchronization
:-) No longer at the mercy of the scheduler
:-(But complex, and maybe high overhead

3

Four strategies

1. Fine-grained synchronization
:-) Can synchronize on different parts of object concurrently
:-(But lots of locking/unlocking overhead

2. Optimistic synchronization
:-) No need to lock while traversing
:-(But need to validate, and may require expensive retries

3. Lazy synchronization
:-) Less work needed than optimisitic synchronization
:-(But contended operations still need to retry

4. Lock-free synchronization
:-) No longer at the mercy of the scheduler
:-(But complex, and maybe high overhead

3

Four strategies

1. Fine-grained synchronization
:-) Can synchronize on different parts of object concurrently
:-(But lots of locking/unlocking overhead

2. Optimistic synchronization
:-) No need to lock while traversing
:-(But need to validate, and may require expensive retries

3. Lazy synchronization
:-) Less work needed than optimisitic synchronization
:-(But contended operations still need to retry

4. Lock-free synchronization
:-) No longer at the mercy of the scheduler
:-(But complex, and maybe high overhead

3

Four strategies

1. Fine-grained synchronization
:-) Can synchronize on different parts of object concurrently
:-(But lots of locking/unlocking overhead

2. Optimistic synchronization
:-) No need to lock while traversing
:-(But need to validate, and may require expensive retries

3. Lazy synchronization
:-) Less work needed than optimisitic synchronization
:-(But contended operations still need to retry

4. Lock-free synchronization
:-) No longer at the mercy of the scheduler
:-(But complex, and maybe high overhead

3

Four strategies

1. Fine-grained synchronization
:-) Can synchronize on different parts of object concurrently
:-(But lots of locking/unlocking overhead

2. Optimistic synchronization
:-) No need to lock while traversing
:-(But need to validate, and may require expensive retries

3. Lazy synchronization
:-) Less work needed than optimisitic synchronization
:-(But contended operations still need to retry

4. Lock-free synchronization
:-) No longer at the mercy of the scheduler
:-(But complex, and maybe high overhead

3

