
Solution: a lock (a/k/a mutex)

class BasicLock {
public:

virtual void lock() =0;
virtual void unlock() =0;

};

1



Using a lock

RAAI-style

class Counter {
public:

int get_and_inc()
{

lock_.lock();
int old = count_;
count_ = old + 1;
lock_.unlock();
return old;

}

private:
int count_ = 0;
Lock lock_;

};

class Counter {
public:

int get_and_inc()
{

auto guard = lock_.acquire();
int old = count_;
count_ = old + 1;
return old;
// ∼Guard() unlocks lock_ here

}

private:
int count_ = 0;
Lock lock_;

};

2



Using a lockRAAI-style

class Counter {
public:

int get_and_inc()
{

lock_.lock();
int old = count_;
count_ = old + 1;
lock_.unlock();
return old;

}

private:
int count_ = 0;
Lock lock_;

};

class Counter {
public:

int get_and_inc()
{

auto guard = lock_.acquire();
int old = count_;
count_ = old + 1;
return old;
// ∼Guard() unlocks lock_ here

}

private:
int count_ = 0;
Lock lock_;

};

2



Base class for RAII-style lock

class GuardedLockBase : public BasicLock {
public:

Guard acquire() { return Guard{∗this}; }

class Guard {
BasicLock& lock_;

public:
Guard(BasicLock& lock) : lock_{lock} { lock_.lock(); }
virtual ∼Guard() { lock_.unlock(); }

};
...

};

3



How to implement the lock?

Two-thread solutions first, then n-thread solutions

4



Base class for RAII-style lock

class GuardedLockBase : public BasicLock {
...
// i() is this thread:
thread::id i() const
{

return this_thread::get_id();
}

// j() is the other thread:
thread::id j() const
{

return i().other_thread();
}
...

};

5



An attempt

class LockOne : public GuardedLockBase {
bool flag_[2] = {};

public:
virtual void lock() override
{

flag_[i()] = true;
while (flag_[j()]) {}

}

virtual void unlock() override { }
};

6



Theorem

LockOne satisfies mutual exclusion.

Proof by contradiction:

• Assume CSA overlaps CSB
• Consider each thread’s last read and write in lock() before

entering its CS. For A to enter, it first writes true to its flag,
and then needs to read false from the other’s:

▶ writeA(flag[A] = true) → readA(flag[B] == false) → CSA
And by symmetry:

▶ writeB(flag[B] = true) → readB(flag[A] == false) → CSB
Note, also, that if A sees B’s flag as false, that must happen
before B writes its flag, and by symmetry for B seeing A’s
flag:

▶ readA(flag[B] == false) → writeB(flag[B] = true)
▶ readB(flag[A] == false) → writeA(flag[A] = true)

These events form a cycle, which is a contradiction.

7



Theorem

LockOne satisfies mutual exclusion. Proof by contradiction:

• Assume CSA overlaps CSB

• Consider each thread’s last read and write in lock() before
entering its CS. For A to enter, it first writes true to its flag,
and then needs to read false from the other’s:

▶ writeA(flag[A] = true) → readA(flag[B] == false) → CSA
And by symmetry:

▶ writeB(flag[B] = true) → readB(flag[A] == false) → CSB
Note, also, that if A sees B’s flag as false, that must happen
before B writes its flag, and by symmetry for B seeing A’s
flag:

▶ readA(flag[B] == false) → writeB(flag[B] = true)
▶ readB(flag[A] == false) → writeA(flag[A] = true)

These events form a cycle, which is a contradiction.

7



Theorem

LockOne satisfies mutual exclusion. Proof by contradiction:

• Assume CSA overlaps CSB
• Consider each thread’s last read and write in lock() before

entering its CS. For A to enter, it first writes true to its flag,
and then needs to read false from the other’s:

▶ writeA(flag[A] = true) → readA(flag[B] == false) → CSA

And by symmetry:
▶ writeB(flag[B] = true) → readB(flag[A] == false) → CSB

Note, also, that if A sees B’s flag as false, that must happen
before B writes its flag, and by symmetry for B seeing A’s
flag:

▶ readA(flag[B] == false) → writeB(flag[B] = true)
▶ readB(flag[A] == false) → writeA(flag[A] = true)

These events form a cycle, which is a contradiction.

7



Theorem

LockOne satisfies mutual exclusion. Proof by contradiction:

• Assume CSA overlaps CSB
• Consider each thread’s last read and write in lock() before

entering its CS. For A to enter, it first writes true to its flag,
and then needs to read false from the other’s:

▶ writeA(flag[A] = true) → readA(flag[B] == false) → CSA
And by symmetry:

▶ writeB(flag[B] = true) → readB(flag[A] == false) → CSB

Note, also, that if A sees B’s flag as false, that must happen
before B writes its flag, and by symmetry for B seeing A’s
flag:

▶ readA(flag[B] == false) → writeB(flag[B] = true)
▶ readB(flag[A] == false) → writeA(flag[A] = true)

These events form a cycle, which is a contradiction.

7



Theorem

LockOne satisfies mutual exclusion. Proof by contradiction:

• Assume CSA overlaps CSB
• Consider each thread’s last read and write in lock() before

entering its CS. For A to enter, it first writes true to its flag,
and then needs to read false from the other’s:

▶ writeA(flag[A] = true) → readA(flag[B] == false) → CSA
And by symmetry:

▶ writeB(flag[B] = true) → readB(flag[A] == false) → CSB
Note, also, that if A sees B’s flag as false, that must happen
before B writes its flag, and by symmetry for B seeing A’s
flag:

▶ readA(flag[B] == false) → writeB(flag[B] = true)
▶ readB(flag[A] == false) → writeA(flag[A] = true)

These events form a cycle, which is a contradiction.

7



Theorem

LockOne satisfies mutual exclusion. Proof by contradiction:

• Assume CSA overlaps CSB
• Consider each thread’s last read and write in lock() before

entering its CS. For A to enter, it first writes true to its flag,
and then needs to read false from the other’s:

▶ writeA(flag[A] = true) → readA(flag[B] == false) → CSA
And by symmetry:

▶ writeB(flag[B] = true) → readB(flag[A] == false) → CSB
Note, also, that if A sees B’s flag as false, that must happen
before B writes its flag, and by symmetry for B seeing A’s
flag:

▶ readA(flag[B] == false) → writeB(flag[B] = true)
▶ readB(flag[A] == false) → writeA(flag[A] = true)

These events form a cycle, which is a contradiction.

7



Two other properties

Deadlock-free:

• One ill-behaved thread does not prevent other threads from
locking other locks

• System as a whole makes progress

• Does LockOne enjoy deadlock freedom?

Starvation-free

• Every locking thread eventually returns
• Every thread makes progress

• Does LockOne enjoy starvation freedom?

8



Two other properties

Deadlock-free:

• One ill-behaved thread does not prevent other threads from
locking other locks

• System as a whole makes progress

• Does LockOne enjoy deadlock freedom?

Starvation-free

• Every locking thread eventually returns
• Every thread makes progress

• Does LockOne enjoy starvation freedom?

8



Two other properties

Deadlock-free:

• One ill-behaved thread does not prevent other threads from
locking other locks

• System as a whole makes progress
• Does LockOne enjoy deadlock freedom?

Starvation-free

• Every locking thread eventually returns
• Every thread makes progress
• Does LockOne enjoy starvation freedom?

8



Deadlock case for LockOne

flag_[0] = true;
flag_[1] = true;

while (flag_[1]) {}
while (flag_[0]) {}

(But sequentially it’s fine.)

9



Another attempt

class LockTwo : public GuardedLockBase {
int waiting_;

public:
virtual void lock() override
{

waiting_ = i();
while (waiting_ == i()) {}

}

virtual void unlock() override {}
}

10



LockTwo claims

• Satisfies mutual exclusion
• Not deadlock-free

▶ Sequential execution deadlocks
▶ Concurrent execution does not (Why?)

11



Peterson’s algorithm

class PetersonLock : public GuardedLockBase {
bool flag_[2];
int waiting_;

public:
virtual void lock() override
{

flag_[i()] = true;
waiting_ = i();
while (flag_[j()] && waiting_ == i()) {}

}

virtual void unlock() override
{

flag_[i()] = false;
}

};

12



Peterson’s Lock properties

• Mutual exclusion
▶ By contradiction…

• Deadlock freedom
▶ Only one thread at a time can be waiting

• Starvation freedom
▶ If A finishes and tries to re-enter while B is waiting, B gets in

first

13



Filter algorithm for n threads

template <int N>
class FilterLock : public GuardedLockBase {

int level_[N] = {0};
int waiting_[N];

bool exists_competition(int level)
{

for (auto k : thread::all_ids())
if (k != i() && level_[k] >= level)

return true;
return false;

}
...

};

14



template <int N>
class FilterLock : public GuardedLockBase {

...
public:

virtual void lock() override
for (int level = 1; level < N; ++level) {

level_[i()] = level;
waiting_[level] = i();
while (exists_competition(level) && waiting_[level] == i())
{ }

}
}

virtual void unlock() override
level_[i()] = 0;

}
};

15



Filter lock properties

• Mutual exclusion
▶ By induction, one thread gets stuck in each level…

• Deadlock freedom
▶ Like Peterson—only one thread can wait per level

• Starvation freedom
▶ Like Peterson—every thread advances if any does

16



cba This work is licensed under a Creative Commons “Attribution-ShareAlike
3.0 Unported” license.
These slides are derived from the companion slides for The Art of Multiproces-
sor Programming, by Maurice Herlihy and Nir Shavit. Its original license reads:

This work is licensed under a Creative Commons Attribution-ShareAlike
2.5 License.
• You are free:

▶ to Share — to copy, distribute and transmit the work
▶ to Remix — to adapt the work

• Under the following conditions:
▶ Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests
that the authors of that work or this endorse you or your use of
the work).

▶ Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work onnly under the same, similar or a
compatible licese.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

▶ http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author’s moral rights.

17

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0/

