
Ownership and Borrowing
and Lifetimes (Oh My!)

EECS 395 “Rust”
Jan. 26, 2016

Definitions

An object is a chunk of memory with a type
Examples:

• The number 4 is a value, not an object.
• A word of memory containing the number 4 is an object.

A variable is the name of an object

2

Ownership

Every object in Rust has an owner. Either:

• a variable, or
• some other object

Ownership comes with rights and responsibilities:

• The owner is allowed to modify the object
• The owner is responsible for freeing the object

3

Ownership

Every object in Rust has an owner. Either:

• a variable, or
• some other object

Ownership comes with rights and responsibilities:

• The owner is allowed to modify the object
• The owner is responsible for freeing the object

3

Transferring ownership

Ownership can be transferred:

pub fn inc_vec(mut v: Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let actual = vec![3, 4, 5];

inc_vec(actual, 2);

assert_eq!(expected, actual);

// Error! actual has been moved

}

4

Transferring ownership

Ownership can be transferred:

pub fn inc_vec(mut v: Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let actual = vec![3, 4, 5];

inc_vec(actual, 2);

assert_eq!(expected, actual);

// Error! actual has been moved

}

4

Transferring ownership

Ownership can be transferred:

pub fn inc_vec(mut v: Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let actual = vec![3, 4, 5];

inc_vec(actual, 2);

assert_eq!(expected, actual); // Error! actual has been moved
}

4

One solution: FP style

pub fn inc_vec(mut v: Vec<usize>, ix: usize) −> Vec<usize> {
v[ix] += 1;
v

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let mut actual = vec![3, 4, 5];

actual = inc_vec(actual, 2);

assert_eq!(expected, actual);
}

5

The Rust solution: borrowing

pub fn inc_vec(v: &mut Vec<usize>, ix: usize) {
v[ix] += 1

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let mut actual = vec![3, 4, 5];

inc_vec(&mut actual, 2);

assert_eq!(expected, actual);
}

6

More idiomatic: take a slice

pub fn inc_vec(v: &mut [usize], ix: usize) {
v[ix] += 1

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let mut actual = vec![3, 4, 5];

inc_vec(&mut actual, 2);

assert_eq!(expected, actual);
}

7

Borrowing implements reader/writer semantics
You can borrow

• as many immutable references as you like, or
• one mutable reference.

let mut x = SomeObject::new();

{
let r1 = &x;
let r2 = &x;
let r3 = r1;
let r4 = &mut x; // error!

}

{
let r5 = &mut x; // ok
let r6 = &x; // error!

}
8

Hidden borrows

Method calls may (mutably) borrow self

9

When borrowing won’t do

• The Copy trait for cheap copies
• The Clone trait for expensive copies

10

The Copy trait

Types implementing the Copy trait are copied implicitly rather
than moved:

• usize and other numeric types
• &str and other borrowed reference types
• In general, types that

▶ are cheap to copy (small), and
▶ don’t involve a resource

let a = 5;
let b = a;
f(a);
let c = a + b;

11

The Clone trait

The Clone trait supports explicit copying:

• String, Vec, HashMap, etc.
• In general, types that

▶ may be expensive to copy, and
▶ don’t involve a unique resource (e.g., a file handle)

let v = vec![3, 4, 5];
let u = v.clone();
f(v);
g(u);

12

Lifetimes

Objects have lifetimes (or more precisely, death times)

{
let mut r: &str;

{
let s = String::new()

r = &s; // error because r outlives s
} // s dies here

} // r dies here

A reference must die before its referent!

13

Lifetimes

Objects have lifetimes (or more precisely, death times)

{
let mut r: &str;

{
let s = String::new()

r = &s; // error because r outlives s
} // s dies here

} // r dies here

A reference must die before its referent!

13

The static lifetime

The only named lifetime is ’static—the lifetime of the whole
program

String slice literals have the static lifetime. That is,

let s: &str = "hello";

means

let s: &’static str = "hello";

14

Lifetime variables

Other lifetimes are relative:

fn choose<’a, T>(x: &’a T, y: &’a T) −> &’a T

15

