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Definitions

An object is a chunk of memory with a type
Examples:

• The number 4 is a value, not an object.
• A word of memory containing the number 4 is an object.

A variable is the name of an object
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Ownership

Every object in Rust has an owner. Either:

• a variable, or
• some other object

Ownership comes with rights and responsibilities:

• The owner is allowed to modify the object
• The owner is responsible for freeing the object
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Transferring ownership

Ownership can be transferred:

pub fn inc_vec(mut v: Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![ 3, 4, 6 ];
let actual = vec![ 3, 4, 5 ];

inc_vec(actual, 2);

assert_eq!(expected, actual);

// Error! actual has been moved

}
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One solution: FP style

pub fn inc_vec(mut v: Vec<usize>, ix: usize) −> Vec<usize> {
v[ix] += 1;
v

}

#[test]
fn test_inc_vec() {

let expected = vec![ 3, 4, 6 ];
let mut actual = vec![ 3, 4, 5 ];

actual = inc_vec(actual, 2);

assert_eq!(expected, actual);
}
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The Rust solution: borrowing

pub fn inc_vec(v: &mut Vec<usize>, ix: usize) {
v[ix] += 1

}

#[test]
fn test_inc_vec() {

let expected = vec![ 3, 4, 6 ];
let mut actual = vec![ 3, 4, 5 ];

inc_vec(&mut actual, 2);

assert_eq!(expected, actual);
}
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More idiomatic: take a slice

pub fn inc_vec(v: &mut [usize], ix: usize) {
v[ix] += 1

}

#[test]
fn test_inc_vec() {

let expected = vec![ 3, 4, 6 ];
let mut actual = vec![ 3, 4, 5 ];

inc_vec(&mut actual, 2);

assert_eq!(expected, actual);
}
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Borrowing implements reader/writer semantics
You can borrow

• as many immutable references as you like, or
• one mutable reference.

let mut x = SomeObject::new();

{
let r1 = &x;
let r2 = &x;
let r3 = r1;
let r4 = &mut x; // error!

}

{
let r5 = &mut x; // ok
let r6 = &x; // error!

}
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Hidden borrows

Method calls may (mutably) borrow self
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When borrowing won’t do

• The Copy trait for cheap copies
• The Clone trait for expensive copies
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The Copy trait

Types implementing the Copy trait are copied implicitly rather
than moved:

• usize and other numeric types
• &str and other borrowed reference types
• In general, types that

▶ are cheap to copy (small), and
▶ don’t involve a resource

let a = 5;
let b = a;
f(a);
let c = a + b;
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The Clone trait

The Clone trait supports explicit copying:

• String, Vec, HashMap, etc.
• In general, types that

▶ may be expensive to copy, and
▶ don’t involve a unique resource (e.g., a file handle)

let v = vec![ 3, 4, 5 ];
let u = v.clone();
f(v);
g(u);
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Lifetimes

Objects have lifetimes (or more precisely, death times)

{
let mut r: &str;

{
let s = String::new()

r = &s; // error because r outlives s
} // s dies here

} // r dies here

A reference must die before its referent!
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The static lifetime

The only named lifetime is ’static—the lifetime of the whole
program

String slice literals have the static lifetime. That is,

let s: &str = "hello";

means

let s: &’static str = "hello";
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Lifetime variables

Other lifetimes are relative:

fn choose<’a, T>(x: &’a T, y: &’a T) −> &’a T
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