
EECS 3/496 Type Systems – Notes

Jesse A. Tov

Winter 2018

1

Contents

1 The let-zl language 4
1.1 Syntax . 4
1.2 Dynamic semantics . 4

1.2.1 Errors . 6
1.3 Static semantics . 7

1.3.1 Type safety . 9
1.4 Termination . 15

2 The simply-typed lambda calculus λ-st 16
2.1 Syntax . 16
2.2 Dynamic semantics . 17
2.3 Static semantics . 17

2.3.1 Type safety . 18
2.4 An extension . 20
2.5 Normalization . 22
2.6 Adding nontermination . 24

3 λ-sub: subtyping with records 25
3.1 Syntax . 25
3.2 Dynamic semantics . 26
3.3 Static semantics . 26

3.3.1 Subtyping . 26
3.3.2 Type safety . 28

3.4 Compiling with coercions . 30

4 The polymorphic lambda calculus λ-2 32
4.1 Syntax . 33
4.2 Dynamic semantics . 33
4.3 Static semantics . 34
4.4 Church data . 35

4.4.1 Natural numbers . 35
4.4.2 Booleans . 36
4.4.3 Products . 36
4.4.4 Sums . 36
4.4.5 Lists . 37
4.4.6 Existentials . 37

5 The higher-order lambda calculus λ-ω 38
5.1 Syntax . 38
5.2 Dynamic semantics . 39
5.3 Static semantics . 39

2

6 ML type inference 42
6.1 STLC revisited . 42

6.1.1 Dynamic semantics . 43
6.1.2 Static semantics . 43
6.1.3 Adding a base type . 45
6.1.4 Introducing let polymorphism . 46

6.2 Type schemes in λ-ml . 46
6.3 Statics . 47

6.3.1 The logical type system . 47
6.3.2 The syntax-directed type system . 48

6.4 Type inference algorithm . 49
6.4.1 Unification . 49
6.4.2 Algorithm W . 50

6.5 Constraint-based type inference . 52

7 Qualified types 54
7.1 Syntax . 54
7.2 Dynamic semantics . 55
7.3 Static semantics . 56

7.3.1 Syntax of types . 56
7.3.2 The types of constants . 57
7.3.3 Instantiation and entailment . 57
7.3.4 Syntax-directed typing . 58

7.4 Type inference algorithm . 62
7.5 Evidence translation . 64

8 The Lambda Cube: λ-cube 67
8.1 Syntax . 67
8.2 Typing Rules . 68

3

1 The let-zl language

1.1 Syntax
The let-zl language has expressions e defined as follows:

e ::= z
 | nil
 | (cons e e)
 | (+ e e)
 | (* e e)
 | (car e)
 | (cdr e)
 | x
 | (let x e e)

z ::= integer
x, y ::= variable-not-otherwise-mentioned

There are two kinds of literal expressions, integers z and the empty list nil. Addi-
tionally, we build longer lists with (cons e1 e2), which is our traditional cons that creates a
linked list node with first and rest. We have two elimination forms for integers, (+ e1 e2) and
(* e1 e2). Additionally, we have elimination forms for lists, (car e) and (cdr e). Finally,
we have variables x, and we have a form of sharing in (let x e1 e2), which binds x to the
value of e1 in e2.

1.2 Dynamic semantics
We might have a decent guess as to what this language means, but to be precise, we will
define its dynamic semantics using a rewriting system, which registers computation by
rewriting expressions to expressions and eventually (hopefully) to values:

v ::= z
 | nil
 | (cons v v)

We define values—final results—to include numbers z, the empty list nil, and pairs of
values (cons v1 v2).

The reduction relation describes a single computation step, and has a case for each
kind of basic computation step that our language performs. For example, here is how we
perform addition:

E[(+ z1 z2)] E[z1 + z2] [plus]

4

The [plus] rule says that to reduce an addition expression where both parameters are already
reduced to numbers, we add the numbers in the metalanguage. The E portion of each term
is the evaluation context, which means that addition can be performed not just on whole
terms, but within terms according to a grammar given below.

The multiplication is similar, also allowing multiplication within any evaluation con-
text:

E[(* z1 z2)] E[z1 × z2] [times]

We have two rules for getting the first and rest of a list:

E[(car (cons v1 v2))] E[v1] [car]

E[(cdr (cons v1 v2))] E[v2] [cdr]

These say that if we have a cons (pair) of values (cons v1 v2) then car extracts the first
value v1 and cdr extracts the second value v2.

Finally (for now), the rule for let involves substituting the value for the variable in the
body:

E[(let x v e)] E[e[x:=v]] [let]

In order to describe where evaluation can happen when when it is finished, we extend
our syntax with values v and evaluation contexts E:

E ::= []
 | (cons E e)
 | (cons v E)
 | (+ E e)
 | (+ v E)
 | (* E e)
 | (* v E)
 | (car E)
 | (cdr E)
 | (let x E e)

Evaluation context E give a grammar for where evaluation can take place. For example,
suppose we want to reduce the term (* (+ 1 2) (+ 3 4)). We need to decompose that term
into an evaluation context and a redex, so that they match one of the reduction rules above.
We can do that: the evaluation context is (* [] (+ 3 4)), which matches the grammar of e,
and the redex in the hole is thus (+ 1 2). This decomposition matches rule [plus], which
converts it to (* 3 (+ 3 4)). Then to perform another reduction, we decompose again, into
evaluation context (* 3 []) and redex (+ 3 4). That converts to 7 plugged back into the
evaluation context, for (* 3 7). Then to perform one more reduction step, we decompose
into the evaluation context [] and the redex (* 3 7), which converts to 21.

5

We define -->* to be the reflexive, transitive closure of -->. That is, e1 ⟶* e2 means
that e1 reduces to e2 in zero or more steps.

The dynamic semantics of let-zl is now given by the evaluation function eval, defined
as:

eval(e) = v if e ⟶* v

As we discuss below, eval is partial for let-zl because there are errors that cause
reduction to get “stuck.”

Exercise 1. Extend the language with Booleans. Besides Boolean literals, what do you
think are essential operations? Extend the dynamic semantics with the necessary reduction
rule(s) and evaluation context(s).

Later we’re going to do induction on the size of terms rather than the structure of terms,
and we’re going to use a particular size function, defined as:

|z| = 0
|nil| = 0
(cons e1 e2)	=	e1	+	e2
(+ e1 e2)	= 1 +	e1	+	e2
(* e1 e2)	= 1 +	e1	+	e2
(car e1)	= 1 +	e1		
(cdr e1)	= 1 +	e1		
x	= 0			
(let x e1 e2)	= 1 +	e1	+	e2

Exercise 2. Prove that for all values, |v| = 0.

1.2.1 Errors

Can let-zl programs experience errors? What does it mean for a reduction semantics to
have an error? Right now, there are no explicit, checked errors, but there are programs that
don’t make sense. For example, (car 5). What do these non-sense terms do right now?
They get stuck! That is, a term that has (car 5) in the hole won’t reduce any further.

Indeed, there several classes of terms that get stuck in our definition of let-zl thus far:

• (car nil) and (cdr nil).

• (car z) and (cdr z), where z is an integer.

• (+ v1 v2) or (* v1 v2) where v1 or v2 is not an integer.

• Any open term, that is, a term with a variable that is not bound by let.

6

What do these stuck states mean? They might correspond to a real language executing
an invalid instruction or some other kind of undefined behavior. This is no good, but there
are several ways we could solve the problem.

First, we could make such programs defined by adding transition rules. For example,
we could add a rule that the car of a number is 0. Another way to make the programs
defined, without sanctioning nonsense, is to add an error state. We do this by extending
terms e to configurations C:

C ::= e
 | WRONG

Then we add transition rules that detect all bad states and transition them to WRONG, thus
flagging them as errors.

E[(car nil)] WRONG [car-nil]

E[(cdr nil)] WRONG [cdr-nil]

This approach is equivalent to adding errors or exceptions to our programming language.
We now update our evaluation function eval to take these errors into account:

eval(e) = v if e ⟶* v
eval(e) = WRONG if e ⟶* WRONG

Alas, eval is still partial, because there are stuck states that we haven’t converted to
wrong states. (The other reason that eval could be partial is non-termination, but as we will
prove, we don’t have that.) A second way to rule out stuck states is to impose a type system,
which rules out programs with some kinds of errors. We can then prove that no programs
admitted by the type system get stuck, which will make eval total for this language.

1.3 Static semantics
With a type system, we assign types to (some) terms to classify them by what kind of value
they compute. In our first, simple type system, we will have only two types:

τ ::= int
 | list

To keep things simple, we will limit list to be lists of integers.
We then define a relation that assigns types to terms. For example, integer literals

always have type int:

z : int
 [int]

Similarly, the literal empty list has type list:

7

nil : list
 [nil]

To type check an addition or multiplication, we check that the operands are both inte-
gers, and then the whole thing is an integer:

e1 : int e2 : int

(+ e1 e2) : int
 [plus]

e1 : int e2 : int

(* e1 e2) : int
 [times]

To type check a cons, we require that the first operand be an integer and the second be
a list, and then the whole thing is a list:

e1 : int e2 : list

(cons e1 e2) : list
 [cons]

To type check car and cdr, we require that the operand be a list; the result for car is
an integer, and the result for cdr is another list:

e : list

(car e) : int
 [car]

e : list

(cdr e) : list
 [cdr]

But when we come to check a variable x, we get stuck. What’s the type of a variable?
To type check variables, we introduce type environments, which keep track of the type of
each let-bound variable:

Γ ::= •
 | Γ, x:τ

We then retrofit all our rules to carry the environment Γ through. For example, the rule
for car becomes

Γ ⊢ e : list

Γ ⊢ (car e) : int
 [car]

and similarly for the other rules we’ve seen so far.
Then we can write the rules for variables and for let. To type check a variable, look it

up in the environment:

8

Γ ⊢ x : Γ(x)
 [var]

If it isn’t found, then the term is open and does not type.
Finally, to type check (let x e1 e2), we first type check e1, yielding some type τ1. We

then type check e2 with an environment extended with x bound to τ1. The resulting type,
τ2, is the type of the whole expression:

Γ ⊢ e1 : τ1
Γ, x:τ1 ⊢ e2 : τ2

Γ ⊢ (let x e1 e2) : τ2
 [let]

Exercise 3. Extend the type system to your language with Booleans.
Exercise 4 (Generic lists). Modify the type system as follows: instead of a single type

list for lists of ints, allow (list int), (list (list int)), (list (list (list int)))
and so on. How do you have to change the syntax of τ? The typing rules?

1.3.1 Type safety

The goal of our type system is to prevent undetected errors—that is, stuck terms—in our
programs. To show that it does this, we will prove type safety: if a term e has a type τ, then
one of:

• It will reduce in some number of steps to a value v that also has type τ.

• It will reduce in some number of steps to WRONG.

• It will reduce forever.

The last case cannot happen with this language, but it will be possible with languages we
study in the future.

It is conventional to prove this theorem in terms of two lemmas, progress and preserva-
tion:

• Preservation: if e1 has type τ and converts in one step to e2, then e2 also has type τ.

• Progress: if e has a type τ, then either e takes a conversion step or e is a value.

Preservation
Before we start, we make an observation about how typing derivations must be formed.
Lemma (Inversion). If Γ ⊢ e : τ then,

• If the term is a variable x then Γ(x) = τ.

• If the term is an integer z then τ = int.

9

• If the term is nil then τ = list.

• If the term is (+ e1 e2) or (* e1 e2) then τ = int and Γ ⊢ e1 : int and Γ ⊢ e2 : int.

• If the term is (cons e1 e2), then τ = list and Γ ⊢ e1 : int and Γ ⊢ e2 : list

• If the term is (let x e1 e2) then there is some type τ1 such that Γ ⊢ e1 : τ1 and

Γ, x:τ1 ⊢ e2 : τ.

Proof. By inspection of the typing rules.
We want to prove that if a term has a type and takes a step, the resulting term also has

a type. We can do this be considering the cases of the reduction relation and showing that
each preserves the type. Alas, each rule involves evaluation contexts E in the way of the
action. Consequently, we’ll have to prove a lemma about evaluation contexts.

Lemma (Replacement). If • ⊢ E[e1] : τ, then there exists some type τe such that • ⊢ e1 : τe.
Furthermore, for any other term e2 such that • ⊢ e2 : τe, it is the case that • ⊢ E[e2] : τ.

Proof. By induction on the structure of E:

• If E is [], then e = E[e1], so τe must be τ. Then since • ⊢ e2 : τe, we have that

• ⊢ E[e2] : τe.

• If (cons E1 e22), then the only typing rule that applies is [cons], which means that
τ must be list. Furthermore, by inversion of that rule it must be the case that

• ⊢ E1[e1] : int and • ⊢ e22 : list. By the induction hypothesis on the former, e1
has some type τe, and furthermore, for any term e2 that also has type τe, we have that

• ⊢ E1[e2] : int. Then by applying rule [list], we have that • ⊢ (cons E1 e22)[e2] : list.

• If (cons e11 E2), then as in the previous case, the only typing rule that applies is
[cons], which means that τ must be list. It also means that E2[e1] must have type
list and e11 must have type int. Then by IH on the former, e1 has a type τe,

and furthermore, for any e2 having type τe, • ⊢ E2[e2] : τe. Then by reapplying rule

[cons], we have that • ⊢ E[e2] : list.

• If (+ E1 e22), then the only typing rule that applies is [plus], which means that τ is
int. It also requires that E1[e1] and e22 both have type int. Then apply IH to the
former, yielding that e1 has some type τe. Furthermore, by the IH, for any other e2
having type τe, we have that • ⊢ E1[e2] : τe. Then reapplying rule [plus], we have

that • ⊢ E[e2] : int.

• If (+ v1 E2) or (* E1 e2) or (* v1 E2), as in the previous case, m.m.

10

• If (car E1) (or (cdr E1)) then the only typing rule that applies is [car] (resp. [cdr]),
which means that τ is int (resp. list). Furthermore, rule [car] (resp. [cdr]) re-

quires that E1[e1] must have type list. Then apply IH to get that • ⊢ E1[e2] : list
as well. Then • ⊢ E[e2] : list as well. Then apply rule [car] (resp. [cdr]) to get that
E[e2] has type int (resp. list).

• If (let x E1 e22), then the only rule that applies is [let]. By that rule, E1[e1] must

have some type τ1, and ([x τ1]) ⊢ e22 : τ. Then by the IH on the former, • ⊢ e1 : τe
for some τe. Furthermore, for any other e2 having type τe, the IH tells us that

• ⊢ E1[e2] : τ1 as well. Then we can reapply rule [let] to get • ⊢ (let x E1 e22)[e2] : τ.

QED.
There’s one more standard lemma we need before we can prove preservation:
Lemma (Substitution). If Γ, x:τx ⊢ e : τ and Γ ⊢ v : τx then Γ ⊢ e[x:=v] : τ.
Proof. By induction on the typing derivation for e; by cases on the conclusion:

• Γ, x:τx ⊢ z : int: Then z[x:=v] is z, and Γ ⊢ z : int.

• Γ, x:τx ⊢ nil : list: Then nil[x:=v] is nil, and Γ ⊢ nil : list.

• Γ, x:τx ⊢ (cons e1 e2) : list: Then we know that Γ, x:τx ⊢ e1 : int and Γ, x:τx ⊢ e2 : list.

Then by the induction hypothesis, Γ ⊢ e1[x:=v] : int and Γ ⊢ e2[x:=v] : list. Then

by rule [cons], we have that Γ ⊢ (cons e1[x:=v] e2[x:=v]) : list. But (cons e1[x:=v] e2[x:=v])

is (cons e1 e2)[x:=v], so Γ ⊢ (cons e1 e2)[x:=v] : list.

• Γ, x:τx ⊢ (+ e1 e1) : int: Then we know that Γ, x:τx ⊢ e1 : int and Γ, x:τx ⊢ e2 : int.

Then by the induction hypothesis, Γ ⊢ e1[x:=v] : int and Γ ⊢ e2[x:=v] : int. Then
apply rule [plus].

• Γ, x:τx ⊢ (* e1 e2) : int: as in the previous case.

• Γ, x:τx ⊢ (car e1) : int: Then we know that Γ, x:τx ⊢ e1 : list. Then by IH, Γ ⊢ e1[x:=v] : list.

And then by rule [car], Γ ⊢ (car e1)[x:=v] : int.

• Γ, x:τx ⊢ (cdr e1) : list: As in the previous case.

• Γ, x:τx ⊢ (let y e1 e2) : τ: There are two possibilities, whether x = y or not:

– First, consider the case where y ‰ x. Then we know that Γ, x:τx ⊢ e1 : τe
for some τe, and that Γ, x:τx, y:τe ⊢ e2 : τ. Then by the induction hypothesis,

11

Γ ⊢ e1[x:=v] : τe. Because x ‰ y, Γ, x:τx, y:τe = Γ, y:τe, x:τx. (This reorder-
ing could be proved correct in an “exchange” lemma, but we take it to be ob-
viously correct from the typing rules. Exchange will be of more interest when
linear type systems force us to get serious about contexts.) So we have that
Γ, y:τe, x:τx ⊢ e2 : τ. Then by the induction hypothesis, Γ, y:τe ⊢ e2[x:=v] : τ.

Then Γ ⊢ (let y e1 y2)[x:=v] : τ by rule [let].

– If x = y then, as before, the induction hypothesis gives us that Γ ⊢ e1[x:=v] : τe.
By the assumption we know that Γ, x:τx ⊢ (let x e1 e2) : τ. By inversion, we

know that Γ, x:τx, x:τe ⊢ e2 : τ. But from the way environments work, we

know that Γ, x:τx, x:τe is the same as Γ, x:τe. Thus we know Γ, x:τe ⊢ e2 : τ,

which gives us the pieces to use the let rule to conclude that Γ ⊢ (let x e1[x:=v] e2) : τ,
which is almost what we need to finish this case. Consider what the substituion
function does when the variables are equal: (let y e1 e2)[x:=v] = (let x e1 e2)[x:=v]
= (let x e1[x:=v] e2). That means, that the typing derivation we just proved,

namely Γ ⊢ (let x e1[x:=v] e2) : τ is the same as the one that finishes this case,

and thus Γ ⊢ (let y e1 e2)[x:=v] : τ.

• Γ, x:τx ⊢ y : Γ, x:τx(y): There are two possibilities, whether x = y or not:

– If x = y, then y[x:=v] is v. Furthermore, this means that τ = τx. And we have

from the premise that Γ ⊢ v : τx.
– If x ‰ y, then y[x:=v] is y. Furthermore, we know that Γ, x:τx(y) = Γ(y) = τ.

Then Γ ⊢ y : Γ(y).

QED.
Now we are ready to prove preservation:
Lemma (Preservation). If • ⊢ e1 : τ and e1 ⟶ e2 then • ⊢ e2 : τ.
Proof. By cases on the reduction relation:

• E[(+ z1 z2)] ⟶ E[z1 + z2]: By the replacement lemma, (+ z1 z2) must have some
type, and by inversion, that type must be int. The result of the addition metafunction
is also an integer with type int. Then by replacement, • ⊢ E[z1 + z2] : τ.

• E[(* z1 z2)] ⟶ E[z1 × z2]: as in the previous case.

• E[(car (cons v1 v2))] ⟶ E[v1]: By the replacement lemma, • ⊢ (car (cons v1 v2)) : τe
for some type τe. The only rule that applies is [car], which requires that τe = int

and • ⊢ (cons v1 v2) : list. This types only by rule [cons], which requires that

• ⊢ v1 : int. Then by replacement, • ⊢ E[v1] : τ.

12

• E[(cdr (cons v1 v2))] ⟶ E[v2]: By the replacement lemma, • ⊢ (cdr (cons v1 v2)) : τe
for some type τe. The only rule that applies is [cdr], which requires that τe = list

and • ⊢ (cons v1 v2) : list. This types only by rule [cons], which requires that

• ⊢ v2 : list. Then by replacement, • ⊢ E[v2] : τ.

• E[(let x v1 e22)] ⟶ E[e22[x:=v1]]: By the replacement lemma, • ⊢ (let x v1 e22) : τe
for some types τe. The only rule that applies is [let], which requires that • ⊢ v1 : τx
for some τx such that ([x τx]) ⊢ e22 : τe. Then by the substitution lemma, • ⊢ e22[x:=v1] : τe.
Then by replacement, • ⊢ E[e22[x:=v1]] : τ.

QED.
Progress
Before we can prove progress, we need to classify values by their types.
Lemma (Canonical forms).
If v has type τ, then:

• If τ is int then v is an integer literal z.

• If τ is list, then either v = nil or v = (cons v1 v2) where v1 has type int and v2
has type list.

Proof. By induction on the typing derivation of • ⊢ v : τ:

• • ⊢ z : int: Then v is an integer literal.

• • ⊢ nil : list: Then v is the empty list.

• • ⊢ (cons e1 e2) : list: By the syntax of values it must be the case that e1 is a value
v1 having type int, and e2 is a value v2 having type list.

• • ⊢ (+ e1 e2) : int: Vacuous, because not a value.

• The remaining cases are all vacuous because they do not allow for value forms.

QED.
Lemma (Context replacement). If e1 ⟶ e2 then E[e1] ⟶ E[e2]. If e1 ⟶ WRONG then

E[e1] ⟶ WRONG.
Proof. If e1 ⟶ e2 then e1 must be some redex in a hole: E1[e11]. Furthermore, it must

take a step to some E1[e22] = e2. Then the same redex e11 converts to the same contractum
e22 in any evaluation context, including E[E1].

If e1 ⟶ WRONG then e1 must be some redex in a hole: E1[e11] which converts to WRONG.
Then that same redex converts to WRONG in any evaluation context, including E[E1].

Lemma (Progress). If • ⊢ e : τ then term e either converts or is a value.
Proof. By induction on the typing derivation; by cases on the conclusion:

13

• • ⊢ z : int: Then e is a value.

• • ⊢ nil : list: Then e is a value.

• • ⊢ (cons e1 e2) : list: Then • ⊢ e1 : int and • ⊢ e2 : list. By the induction hy-
pothesis, term e1 either converts, or is a value. If e1 converts to some term e11, then
(cons e1 e2) ⟶ (cons e11 e2) by the context replacement lemma. If e1 converts to
WRONG, then (cons e1 e1) ⟶ WRONG by the context replacement lemma. If e1 is a
value v1, then consider e2, which by the induction hypothesis either converts or is a
value. If e2 converts to a term e22, then (cons v1 e2) ⟶ (cons v1 e22) by the context
replacement lemma. If e2 converts to WRONG, then (cons v1 e2) ⟶ WRONG by the
context replacement lemma. Finally, if e2 is a value v2 then e is a value (cons v1 v2).

• • ⊢ (+ e1 e2) : int: Then • ⊢ e1 : int and • ⊢ e2 : int. By the induction hypothesis,
e1 either converts or is a value. If e1 converts to a term e11, then (+ e1 e2) ⟶ (+ e11 e2)
by the context replacement lemma. If e1 converts to WRONG then (+ e1 e2) ⟶ WRONG
by the context replacement lemma. If e1 is a value v1, then consider e1, which by the
induction hypothesis either converts or is a value. If e2 converts to a term e22, then
(+ v1 e2) ⟶ (+ v1 e22) by the context replacement lemma. If e2 converts to WRONG,
then (+ v1 e2) ⟶ WRONG by the context replacement lemma. Otherwise, e2 is a value
v2. By the canonical forms lemma, v1 is an integer z1 and v2 is an integer z2. Thus,
we can take the step (+ z1 z2) ⟶ z1 + z2.

• • ⊢ (* e1 e2) : int: As in the previous case.

• • ⊢ (car e1) : int: Then • ⊢ e1 : list. By the induction hypothesis, e1 either con-
verts or is a value. If it converts to a term e11, then (car e1) ⟶ (car e11) by the
context replacement lemma. If it converts to WRONG, then (car e1) ⟶ WRONG by the
context replacement lemma. Otherwise, e1 is a value. By the canonical forms lemma,
it has the form (cons v1 v2), so we can take a step (car (cons v1 v2)) ⟶ v1.

• • ⊢ (cdr e1) : list: As in the previous case, but reducing to v2.

• • ⊢ x : τ: Vacuous.

• • ⊢ (let x e1 e2) : τ: Then • ⊢ e1 : τx and ([x τx]) ⊢ e2 : τ for some τx. Then by the
induction hypothesis, e1 either converts or is a value. If e1 converts to a term e11, then
(let x e1 e2) ⟶ (let x e11 e2) by the context replacement lemma. If e1 converts to
WRONG then (let x e1 e2) ⟶ WRONG by the context replacement lemma. Otherwise,
e1 is a value v1, and (let x v1 e2) ⟶ e2[x:=v1].

14

QED.
Exercise 5. Prove progress and preservation for your language extended with Booleans.
Exercise 6. Prove progress and preservation for your language extended with generic

lists.
Exercise 7. Are the previous two exercises orthogonal? How do they interact or avoid

interaction?

1.4 Termination
Now let’s prove a rather strong property about a rather weak language.

Theorem (Size is work). Suppose • ⊢ e : τ and |e| = k. Then e either reduces to a
value or goes wrong in k or fewer steps.

Proof. This proof uses induction, but it uses induction on the set ˆ , using a lexico-
graphic ordering. That is, we consider the first natural number to be the number of nodes
in the given e (when viewed as a tree) and the second one to be |e|. The lexicographic
order is well-founded, and so we can use induction when we have a term where the |e| is
strictly less than the given one, or when |e| is the same as the given one, but the number
of nodes is strictly smaller.

• z: Then k = 0, and e reduces to value z in 0 steps.

• nil: Also k = 0.

• (cons e1 e2). Then by inversion of [cons], • ⊢ e1 : int and • ⊢ e2 : list. Let j be
the size of e1; then the size of e2 is k – j. We can use induction on both e1 and e2,
because they both have strictly fewer nodes that (cons e1 e2), and |e1| and |e2| are
both less than or equal to |(cons e1 e2)|. (With the exception of the let case, the
justification for induction will be the same as this one in all the other cases.) Then
by induction, e1 reduces to a value v1 or to WRONG in j or fewer steps. If it reduces to
WRONG then by the context replacement lemma, (cons e1 e2) also reduces to WRONG
in j or fewer steps. Otherwise, consider the induction hypothesis on e2 (size k – j);
it must reduce to a value v2 or to WRONG in k – j or fewer steps. If WRONG, then the
whole thing goes wrong by context replacement. Otherwise, (cons e1 e2) goes to
(cons v1 v2) in k or fewer steps.

• (+ e1 e2). Then by inversion of the typing rule int, both subterms have type int. Let
j be the size of e1; then the size of e2 is k – j – 1. Then by the induction hypothesis,
each reduces to a value or goes wrong, in at most j and k – j – 1 steps respectively.
If either goes wrong, then the whole term goes wrong because both (+ [] e2) and
(+ v1 []) are evaluation contexts. Otherwise, by the canonical values lemma both
values must be numbers z1 and z2. Because e1 ⟶* z1 in j or fewer steps, by context
replacement (+ e1 e2) ⟶* (+ z1 e2) in j or fewer steps. And because e2 ⟶* z2 in k – j
– 1 or fewer steps, by context replacement again (+ z1 e2) ⟶* (+ z1 z2) in k – j – 1 or

15

fewer steps. Then in one more step (+ z1 z2) ⟶ z1 + z2, which is a value. The total
number of steps has been k or fewer.

• (* e1 e2): As in the previous case, m.m.

• (car e1) and (cdr e1): In either case, the subterm e1 must have type list by in-
version of the typing rule. Furthermore, the size of e1 must be k – 1. Then by the
induction hypothesis, e1 either reduces to a value or goes wrong in k – 1 or fewer
steps. If it goes wrong then the whole term goes wrong. If it reduces to a value, then
by preservation, that value also has type list. (Note also that it also reduces to a
value in the evaluation context (car []).) Then by the canonical values lemma, that
value must be either nil or (cons v1 v2) for some values v1 and v2. If the former
then the whole term goes to WRONG in one more step by rule [car-nil] or rule [cdr-nil],
respectively. If the latter, then it take one more step to v1 or v2, respectively. In either
case, k steps have transpired.

• x: Vacuous because open terms don’t type.

• (let x e1 e2): By inversion, we know that • ⊢ e1 : τx for some type τx. And we know

that ([x τx]) ⊢ e2 : τ. Let j be the size of e1; then the size of e2 is k – j – 1. We can
use induction on e1 because |e1| is less than |(let x e1 e2)| and there are strictly
few nodes. Thus, by induction on e1, we have that e1 reduces to a value or goes
wrong in j or fewer steps. If it goes wrong then the whole term goes wrong. If it re-
duces to a value v1, then by context replacement (and induction on the length of the
reduction sequence), the whole term reduces (let x e1 e2) ⟶* (let x v1 e2) in j or
fewer steps. Then in one more step, (let x v1 e2) ⟶ e2[x:=v1]. Note that because
the size of a variable is 0 and so is the size of a value, the size of e2[x:=v1] is the
same as the size of e2, k – j – 1, which is strictly less than the size of (let x e1 e2).
In this case, the number of nodes in e2[x:=v1] might be many more than the number
of nodes in e2 because v1 might be a long list. But we set up our induction using the
lexicgraphic order so that we only need to consider the relative sizes of e2[x:=v1] and
(let x e1 e2), not the number of nodes them to justify induction. Now, by preserva-

tion, • ⊢ e1[x:=v1] : τ. So we an apply the induction hypothesis to e1[x:=v1], learn-
ing that it goes wrong or reaches a value in k – j – 1 or fewer steps. This yields a
total of k or fewer steps.

QED.

2 The simply-typed lambda calculus λ-st

2.1 Syntax
The λ-st language has types τ and terms e defined as follows:

16

τ ::= nat
 | (→ τ τ)

e ::= x
 | z
 | (s e)
 | (λ x τ e)
 | (ap e e)

x, y ::= variable-not-otherwise-mentioned

Types include the natural numbers nat and function types (→ τ1 τ2). Terms include vari-
ables, Peano naturals (z for zero and s for successor), lambda abstractions, and applica-
tions.

2.2 Dynamic semantics
To define the dynamic semantics of λ-st, we give syntax for values and evaluation con-
texts:

v ::= z
 | (s v)
 | (λ x τ e)

E ::= []
 | (s E)
 | (ap E e)
 | (ap v E)

Values include natural numbers and lambda abstractions. We evaluate under s and we
evaluate both the operator and operand in an application.

Then the reduction relation consists of one rule:

E[(ap (λ x τ e) v)] E[e[x:=v]] [β-val]

The dynamic semantics of λ-st is given by the evaluation function eval:

eval(e) = v if e ⟶* v

As defined, eval could be partial, but we will prove it total on well typed terms, first by
proving that well typed terms don’t go wrong, and then by proving that well typed terms
don’t diverge.

2.3 Static semantics
To type λ-st, we define typing contexts mapping variables to types:

Γ ::= •
 | Γ, x:τ

17

Then the rules are as follows. There are two constructors for the naturals, and they type
as such:

Γ ⊢ z : nat
 [zero]

Γ ⊢ e : nat

Γ ⊢ (s e) : nat
 [succ]

That is, z is a natural, and for any term e of type nat, (s e) has type nat as well.
Variables type by looking them up in the typing context:

Γ ⊢ x : Γ(x)
 [var]

Lambda abstractions type by extending the typing context with the bound variable and
checking the body:

Γ, x:τ1 ⊢ e : τ2

Γ ⊢ (λ x τ1 e) : (→ τ1 τ2)
 [abs]

And finally, applications require the domain of the operator to match the type of the
operand:

Γ ⊢ e1 : (→ τ2 τ)

Γ ⊢ e2 : τ2

Γ ⊢ (ap e1 e2) : τ
 [app]

Exercise 8. Extend λ-st with a product type (* τ1 τ2). You will need a form for
constructing products and projections for getting the components out. Add the necessary
reduction and typing rules.

Exercise 9. Extend λ-st with a sum type (+ τ1 τ2). You will need two injection
forms (inl e) and (inr e) to create sums, and one case analysis form to eliminate them,
(match e [x el] [y er]). The case analysis form takes a step once e reduces to a sum value:
(match (inl v) [x el] [y er]) ⟶ el[x:=v], and similarly for (inr v). Add the necessary
reduction and typing rules.

2.3.1 Type safety

Before we can prove type safety, we need to prove several standard lemmas.
We use the judgment e : τ with no context to mean that e types in an empty context:

• ⊢ e : τ.

18

Lemma (Replacement). If E[e] : τ then e : τe for some τe. Furthermore, for any other
term enew : τe, E[enew] : τ.

Proof. By induction on the structure of E:

• []: Then trivially, with τe = τ.

• (s E1): By inspection of the typing rules, we know that if (s E1)[e] has a type,
that type is int. By inversion, we know that E1[e] has type int as well. Then
by the induction hypothesis, e has some type τe, and for any enew having type τe,
E1[enew] : int. Then by rule [succ], (s E1[enew]) : int.

• (ap E1 e1): The whole term has a type τ only if there is some type τ1 such that
E1[e] : τ1 ⟶ τ and e1 : τ1. Then by the induction hypothesis, e : τe, and for any term
enew having type τe, E1[enew] : τ1 ⟶ τ. Then (ap E1[enew] e1) : τ.

• (ap v1 E1): The whole term has a type τ only if there is some type τ1 such that
v1 : τ1 ⟶ τ and E1[e] : τ1. Then by the induction hypothesis, e : τe, and for any
term enew having type τe, E1[enew] : τ1. Then (ap v1 E1[enew]) : τ.

Lemma (Substitution). If Γ ⊢ e1 : τ1 and Γ, x:τ1 ⊢ e2 : τ2 then Γ ⊢ e2[x:=e1] : τ2.
Proof. By induction on the type derivation for e2:

• Γ, x:τ1 ⊢ y : τ2: If x = y then τ1 = τ2, and y[x:=e1] = e1, which has type τ1. If x ‰ y,
then y[x:=e1] = y, which must type in Γ.

• Γ, x:τ1 ⊢ z : nat: This types in an environment.

• Γ, x:τ1 ⊢ (s e) : nat: Then it must be the case that Γ, x:τ1 ⊢ e : nat. Then by induc-

tion, Γ ⊢ e[x:=e1] : nat, and reapplying rule [succ], we have that Γ ⊢ (s e)[x:=e1] : nat.

• ap cases are similar.

• Γ, x:τ1 ⊢ (λ y τ21 e) : (→ τ21 τ22): This can be the case only if Γ, x:τ1, y:τ21 ⊢ e : τ22.
Without loss of generality, x‰ y, so we can swap them, yielding Γ, y:τ21, x:τ1 ⊢ e : τ22.
Then by induction Γ, y:τ21 ⊢ e[x:=e1] : τ22. Then apply rule [abs], to get Γ ⊢ (λ y τ21 e)[x:=e1] : (→ τ21 τ22).

Lemma (Preservation). If e1 : τ and e1 ⟶ e2 then e2 : τ.
Proof. By cases on the reduction relation. There is one case:

• E[(ap (λ x τx e11) v12)] ⟶ E[e11[x:=v12]]. By the replacement lemma, we know

that (ap (λ x τx e11) v12) : τ1. This only types if (λ x τx e11) : (→ τx τ1) and v12 : τx.

The former is only the case if •, x:τx ⊢ e11 : τ1. Then by the substitution lemma,
e11[x:=v12] : τ1, and by replacement, E[e11[x:=v12]] : τ.

19

QED.
Lemma (Canonical forms).
If v : τ then:

• If τ is nat, then v is either z or or (s v1) for some v1.

• If τ is (→ τ1 τ2), then v is some lambda abstraction (λ x τ1 e1).

Proof. By induction on the structure of the typing derivation. Only three rules form
values, and those three rules correspond to the conditions of the lemma.

Lemma (Progress). If e1 : τ then either e1 is a value or e1 ⟶ e2 for some e2.
Proof. By induction on the structure of the typing derivation, considering the terms:

• x: Vacuous, open terms don’t type.

• z: A value.

• (s e): By induction, e steps or is a value of type nat. If the former then the whole
term steps; if the latter then the whole term is a value.

• (ap e11 e12): By induction, each subterm steps or is a value. If the first subterm steps,
then the whole term steps. If the first subterm is a value and the second steps, then
the whole thing steps. If both are values, then by inversion of the [app] rule, e11
has a function type, and by the canonical forms lemma, that means it is a lambda
abstraction (λ x e). Then the whole term steps to e[x:=e12].

• (λ x τ1 e): A value.

Theorem (Safety). 1) If e1 : τ and e1 ⟶ e2 then e2 : τ. 2) If e1 : τ then either e1 is a
value or e1 ⟶ e2 for some e2.

Exercise 10. Extend the type safety theorem to cover product and/or sum types.

2.4 An extension
As it stands, we can’t do much with natural numbers. Inspired by Gödel’s system T, we
add a limited, terminating form of recursion on natural numbers. We extend the syntax of
terms and evaluation contexts as follows:

e ::=
 | (rec e [ez] [xpre yrec es])

E ::=
 | (rec E [ez] [xpre yrec es])

20

The new form is the recursor, which works as follows. First, it evaluates e to a value, which
must be a natural number. If that number is zero, then it evaluates ez. Otherwise, if that term
is a successor (s v), it recurs on v, binding the recursive result to yrec and the predecessor
v to xpre in es.

There are no new types. We extend the reduction relation with two cases representing
the just-described dynamics:

E[(rec z [ez] [xpre yrec es])] E[ez] [rec-zero]

E[(rec (s v) [ez] [xpre yrec es])] E[es[xpre:=v][yrec:=(rec v [ez] [xpre yrec es])]] [rec-succ]

There is one rule for typing the new form:

Γ ⊢ e : nat
Γ ⊢ ez : τ

Γ, xpre:nat, yrec:τ ⊢ es : τ

Γ ⊢ (rec e [ez] [xpre yrec es]) : τ
 [rec]

Here is predecessor expressed using the recursor:

pred = (λ n nat (rec n [z] [xpre yrec xpre]))

For zero it returns zero, and for any other number it returns the predecessor, ignoring the
recursive result.

And here is addition expressed using the recursor:

add = (λ n nat (λ m nat (rec n [m] [xpre yrec (s yrec)])))

Exercise 11. Implement multiplication using the recursor.
Exercise 12. Implement factorial using the recursor.
Exercise 13. Implement a function that divides a natural number by two (rounding

down).
Exercise 14. Extend the type safety theorem for the recursor.
Exercise 15. The recursor is currently call-by-name, in the sense that it substitutes the

whole recursive expression of (rec v [ez] [xpre yrec es]) for yrec in the non-zero case. The
call-by-value form would compute the value of that subterm first and then subtitute the
value, but making it call-by-value requires introducing an additional form. let will do.
(Why can’t we just use λ?) Show how to add let to λ-st and how that can be used to
make the recursor call-by-value.

21

2.5 Normalization
A normal form is a form that doesn’t reduce any further, which for our purposes (since we
have eliminated stuck states) is a value. A term e normalizes, written (⇓ e) if it reduces to
a normal form, that is, a value.

Historically, when working with lambda calculi that allow free conversion (that is, re-
dexes can by identified anywhere in a term, without a notion of evaluation contexts) authors
have distinguished weak from strong normalization. A term weakly normalizes if it has
some reduction sequence reaching a normal form; a term strongly normalizes if every of
its reduction sequences reaches a normal form. However, we’ve defined our language to be
deterministic, which causes weak and strong normalization to coincide.

We wish to show that all terms that have a type reduce to a value. It is insufficient
to do induction on typing derivations. (Shall we try it?) What we end up needing is a
(unary) relation on terms, indexed by types, and defined by induction on types, of the form
(SN τ e), as follows:

• (SN nat e) iff e : nat and (⇓ e).

• (SN (→ τ1 τ2) e) iff e : (→ τ1 τ2) and (⇓ e) and for all e1 such that (SN τ1 e1), (SN τ2 (ap e e1)).

Exercise 16. How would we extend SN for product and/or sum types?
Lemma (SN preserved by conversion).
Suppose that e1 : τ and e1 ⟶ e2. Then:

• (SN τ e2) implies (SN τ e1).

• (SN τ e1) implies (SN τ e2).

Proof. By induction on τ:

• nat: If e2 normalizes then e1 normalizes by the same sequence because e1 takes a
step to e2, which then normalizes. We know this because our formulation of λ-st is
determistic, and there is no other way to reduce the term. (We could prove this but
haven’t.) Since it has type τ, we have (SN nat e1)

If e1 normalizes then it does so via e2, so e2 normalizes as well and by preservation it
has the same type, so (SN nat e2).

• (→ τ1 τ2): If (SN (→ τ1 τ2) e2) then we know that e2 normalizes and when applied to
a good term, that normalizes too. We need to show that e1 does that same, that is, that
(SN τ1 earb) implies that (SN τ2 (ap e1 earb)) for arbitrary term earb. We know that
(SN τ2 (ap e2 earb)). Since e1 ⟶ e2, we know that (ap e1 earb) ⟶ (ap e2 earb). Since

τ2 is a subexpression of (→ τ1 τ2), we can apply the induction hypothesis at that type,
yielding (SN τ2 (ap e1 earb)) as desired.

22

If (SN (→ τ1 τ2) e1) then we know that e1 normalizes and when applied to a good
term, that normalizes too. We need to know that e2 does the same, that is, that
(SN τ1 earb) implies that (SN τ2 (ap e2 earb)) for arbitrary term earb. We know that
(SN τ2 (ap e1 earb)). Since e1 ⟶ e2, we know that (ap e1 earb) ⟶ (ap e2 earb). Then
by induction, (SN τ2 (ap e2 earb)).

QED.
Next, we define substitutions, and what it means for a substitution to satisfy a typing

environment. A substitution associates some variables with values to substitute them:

γ ::= •
 | γ[x:=v]

To apply a substitution to a term, written eγ, is to substitute in the term the values of the
substitution for their variables.

A substitution satisfies a typing environment if they have the same domains (sets of vari-
ables) and every value in the substitution not only has the type given for the corresponding
variable in the type environment, but is SN for that type:

• ⊨ •
 [nil]

(SN τ v)

γ ⊨ Γ

γ[x:=v] ⊨ Γ, x:τ
 [cons]

Note that if a substitution satisfies a type environment, this means that it contains values
that typed in the empty type environment, meaning they are closed. Thus, the order of
substitution doesn’t matter, as no variable in the substitution will interfere with any other.

Now we can prove a lemma that if we apply a substitution to a term that types in an
environment consistent with the substitution, then the substituted term types in the empty
environment:

Lemma (Mass substitution). If Γ ⊢ e : τ and γ ⊨ Γ then • ⊢ eγ : τ.
Proof. By induction on the length of γ. If empty, then Γ is empty, and the substitution

has no effect. Otherwise, γ = γ1[x:=vx], where Γ = Γ1, x:τx and γ1 ⊨ Γ1 and (SN τx vx).

Then by the substitution lemma, Γ1 ⊢ e[x:=vx] : τ. Then by induction, • ⊢ e[x:=vx]γ1 : τ.
But that is eγ.

Lemma (Every typed term is good). If Γ ⊢ e : τ and γ ⊨ Γ then (SN τ eγ).
Proof. By induction on the typing derivation:

• Γ ⊢ x : Γ(x): Appling γ to x gets us a v such that (SN Γ(x) v).

• Γ ⊢ z : nat: Since z = zγ, and • ⊢ z : nat and (⇓ z), we have that (SN nat z).

23

• Γ ⊢ (s e1) : nat: By inversion, we know that Γ ⊢ e1 : nat. Then by induction, we
have that (SN nat e1γ). By the definition of NT for nat, we have that e1γ types in
the empty context and reduces to a natural number. Then (s e1)γ does as well.

• Γ ⊢ (ap e1 e2) : τ: By inversion, we know that Γ ⊢ e1 : (→ τ2 τ) and Γ ⊢ e2 : τ2. By

induction, we know that (SN (→ τ2 τ) e1) and (SN τ2 e2). The former means that
for any earb such that (SN τ2 earb), we have (SN τ (ap e1 earb)). Let earb be e2. Then
(SN τ (ap e1 e2)).

• Γ ⊢ (λ x τ1 e2) : (→ τ1 τ2): Without loss of generality, let x be fresh for γ. So then

that term equals (λ x τ1 e1γ). We need to show that (SN (→ τ1 τ2) (λ x τ1 e2γ)). To
show this, we need to show three things:

– To show • ⊢ (λ x τ1 e2γ) : (→ τ1 τ2). It suffices to show that Γ ⊢ (λ x τ1 e2) : (→ τ1 τ2)
for some Γ such that γ ⊨ Γ, by the mass substitution lemma. That is what we
have.

– To show (⇓ (λ x τ1 e2γ)). This is clear, because it is a value.

– To show that for any e1 such that (SN τ1 e1), (SN τ2 (ap (λ x τ1 e2γ) e1)). By
the definition of SN, we know that e1 ⟶* v1 for some value v1. Then we can
take an additional step, (ap (λ x τ1 e2γ) v1) ⟶ e2γ[x:=v1]. Because SN is pre-
served by backward conversion, it suffices to show that this term is SN for τ2.

By the lemma that SN is preserved by forward conversion, we know that (SN τ1 v1).

So then we can say that γ[x:=v1] ⊨ Γ, x:τ1. Now consider inverting the judg-

ment that Γ ⊢ (λ x τ1 e2) : (→ τ1 τ2). From this, we know that Γ, x:τ1 ⊢ e2 : τ2.
Then applying the induction hypothesis, we have that (SN τ2 e2γ[x:=v1]). This
is what we sought to show.

QED.
Strong normalization follows as a corollary.
Exercise 17. Extend the normalization proof to cover products and/or sums.
Exercise 18. Show that λ-st with the recursor still enjoys normalization.

2.6 Adding nontermination
We can add unrestricted recursion to λ-st by adding a fixed-point operator. We will also
add an if0 construct, which lets us discriminate between zero and non-zero and extracts
the predecessor from a natural. (This is redundant with the recursor, but easier to use. The
resulting language is equivalent to the classic PCF.)

The new expression forms are (fix e) and (if0 e e [x e]):

24

e ::=
 | (fix e)
 | (if0 e e [x e])

What fix does at run time is apply its argument, which must be a function, to the fix
of itself, thus implementing recursion. What if0 does is discriminate between z and (s v),
evaluating to its then-branch if zero, and its else-branch if not.

E[(fix (λ x τ e))] E[e[x:=(fix (λ x τ e))]] [fx]

E[(if0 z ez [x es])] E[ez] [if0-z]

E[(if0 (s v) ez [x es])] E[es[x:=v]] [if0-s]

To type fix, we type its argument, which must be a function from the desired type to
itself. To type if0, the natural position must type as nat, and the then- and else-branches
must have the same type, where the else-branch has the predecessor bound.

Γ ⊢ e : (→ τ τ)

Γ ⊢ (fix e) : τ
 [fx]

Γ ⊢ e : nat
Γ ⊢ ez : τ

Γ, x:nat ⊢ es : τ

Γ ⊢ (if0 e ez [x es]) : τ
 [if0]

Exercise 19. Define addition, multiplication, and factorial using fix and if0. How
does it compare to using the recursor?

Exercise 20. Extend type safety for fix.
Exercise 21. Where does the normalization proof break down if we add fix?
Exercise 22. Implement a union-find in STLC with records and vectors.

3 λ-sub: subtyping with records

3.1 Syntax
Extending STLC with records is straightforward. First, we extend the syntax of types and
terms, using ℓ for record field labels:

τ ::=
 | (Record [ℓ τ] ...)

e ::=
 | (record [ℓ e] ...)
 | (project e ℓ)

ℓ, m ::= variable-not-otherwise-mentioned

25

A record type lists field names with their types; assume the field names are not repeated
within a record. A record expression lists field names with expressions whose values will
fill the fields. A projection expression projects the value of the named field from a record.

3.2 Dynamic semantics
The dynamics are straightforward. We extend values to include records where every field
contains a value. We extend evaluation contexts to evaluate the fields of a record from left
to right.

v ::=
 | (record [ℓ v] ...)

E ::=
 | (record [ℓ v] ... [ℓ E] [ℓ e] ...)

.
Then we add one reduction rule, for projecting the field from a record:

E[(project (record [ℓi vi] ... [ℓ v] [ℓj vj] ...) ℓ)] E[v] [prj]

3.3 Static semantics
The simplest way to type records is to add one rule for each new expression form and keep
the rest of the language the same:

Γ ⊢ ei : τi ...

Γ ⊢ (record [ℓi ei] ...) : (Record [ℓi τi] ...)
 [record]

Γ ⊢ e : (Record [ℓi τi] ... [ℓ τ] [ℓj τj] ...)

Γ ⊢ (project e ℓ) : τ
 [project]

This works, but it’s not as expressive as we might like. Consider a function (λ x (Record [ℓ nat]) (project x ℓ)).
It takes a record of one field ℓ and projects out that field. But is there any reason we
shouldn’t be able to use this function on a record with more fields than ℓ? Subtyping cap-
tures that intuition, allowing us to formalize it and prove it sound.

3.3.1 Subtyping

To do this, we define the subtype relation <:, which related pairs of types. Intuititively
τ1 <: τ2 means that a τ1 may be used wherever a τ2 is required.

First, nat is a subtype of itself:

nat <: nat
 [nat]

26

Second, function types are contravariant in the domain and covariant in the arguments:

τ21 <: τ11
τ12 <: τ22

(→ τ11 τ12) <: (→ τ21 τ22)
 [arr]

Exercise 23. Suppose that Int <: Real. Consider the types (→ Int Int), (→ Real Real),

(→ Int Real), and (→ Real Int). Which of these are subtypes of which others? Does
this make sense?

Finally, records provide subtyping by allowing the forgetting of fields (this is called
width subtyping) and by subtyping within individual fields (depth subtyping). We can
express this with three rules:

(Record) <: (Record)
 [rec-empty]

(Record [mi τi] ...) <: (Record [mj τj] ...)

(Record [ℓ τ] [mi τi] ...) <: (Record [mj τj] ...)
 [rec-width]

τl <: τr
(Record [mi τi] ...) <: (Record [mj τj] ... [mk τk] ...)

(Record [ℓ τl] [mi τi] ...) <: (Record [mj τj] ... [ℓ τr] [mk τk] ...)
 [rec-depth]

Rule [rec-empty] says that the empty record is a subtype of itself; we need this as a base
case. Rule [rec-width] says that supertype records may have fields that are missing from
their subtypes. Rule [rec-depth] says that when records have a common member then the
types of the fields must be subtypes.

Exercise 24. Prove that <: is a preorder, that is, reflexive and transitive.
The idea of subtyping is that we can apply it everywhere. If we can conclude that

Γ ⊢ e : τ1 and τ1 <: τ2 then we should be able to conclude that Γ ⊢ e : τ2. It’s possible to
add such a rule, and it works fine theoretically, but because the rule is not syntax directed,
it can be difficult to implement. In fact, the only place in our current language that we need
subtyping is in the application rule, so we replace the STLC application rule with this:

Γ ⊢ e1 : (→ τ1 τ)

Γ ⊢ e2 : τ2
τ2 <: τ1

Γ ⊢ (ap e1 e2) : τ
 [app]

27

3.3.2 Type safety

Subtyping changes our preservation theorem somewhat, because reduction can cause type
refinement. (That is, we learn more type information.) Here is the updated preservation
theorem:

Theorem (Preservation). If • ⊢ e1 : τ1 and e1 ⟶ e2 then there exists some τ2 such that

• ⊢ e2 : τ2 and τ2 <: τ1.
Before we can prove it, we update the replacement and substitution lemmas as follows:
Lemma (Replacement). If Γ ⊢ E[e] : τ, then Γ ⊢ e : τe for some type τe. Furthermore,

for any enew such that Γ ⊢ enew : τnew for τnew <: τe, Γ ⊢ E[e2] : τout for some τout such that
τout <: τ.

Proof. By induction on E. The interesting cases are for application:

• If E is (ap E1 e2) then the whole term has a type τ only if there are some types

τ1 and τ2 such that • ⊢ E1[e] : (→ τ1 τ) and • ⊢ e2 : τ2 where τ2 <: τ1. Then by in-
duction, e has a type, and if we replace e with enew having a subtype of that, then

• ⊢ E1[enew] : τ† for τ† <: (→ τ1 τ). The subtyping relation relates arrows only to

other arrows, so τ† = (→ τ1† τ2†) with τ1 <: τ1† and τ2† <: τ. Then by transitivity,

τ2 <: τ1†. This means that we can reform the application • ⊢ (ap E1[enew] e2) : τ2†,
which has a subtype of τ.

• If E is (ap e1 E2), then the whole term has a type τ only if there are some types

τ1 and τ2 such that • ⊢ e1 : (→ τ1 τ) and • ⊢ E2[e] : τ2 where τ2 <: τ1. Then by in-
duction, e has a type, and if we replace e with enew having a subtype of that, then

• ⊢ E2[enew] : τ2† where τ2† <: τ2. Then by transitivity, τ2† <: τ1, so we can reform the
application having the same type τ.

Lemma (Substitution). If Γ ⊢ e1 : τ1 and Γ, x:τ1† ⊢ e2 : τ2 where τ1 <: τ1† then Γ ⊢ e2[x:=e1] : τ2†

for τ2† <: τ2.
Proof. By induction on the derivation of the typing of e2:

• Γ, x:τ1† ⊢ y : τ2.
If x = y, then τ2 = τ1†. Then e2[x:=e1] = e1, which has type τ1. Let τ2† be τ1. Then the
subtyping holds.

If x ‰ y, then Γ, x:τ1† ⊢ y : Γ(y), as before the substitution.

• Γ, x:τ1† ⊢ z : nat, then substitution has no effect and it types in any environment.

• Γ, x:τ1† ⊢ (s e) : nat, then by induction Γ ⊢ e[x:=e1] : nat, which relates only to
nat. Then reapply s.

28

• Γ, x:τ1† ⊢ (λ y τ11 e) : (→ τ11 τ12), then by inversion we know that Γ, x:τ1†, y:τ11 ⊢ e : τ12.
Then by the induction hypothesis, Γ, y:τ11 ⊢ e[x:=e1] : τ12† for some τ12† <: τ12. Then

by [abs], Γ ⊢ (λ y τ11 e)[x:=e1] : (→ τ11 τ12t), which is a subtype of (→ τ11 τ12).

• Γ, x:τ1† ⊢ (ap e11 e12) : τ1, then by inversion we know that Γ, x:τ1† ⊢ e11 : (→ τ11 τ1)
and Γ, x:τ1† ⊢ e12 : τ12 where τ12 <: τ11. Then by induction (twice), we have that

Γ ⊢ e11[x:=e1] : τ11† where τ11† <: (→ τ11 τ1) and that Γ ⊢ e12[x:=e1] : τ12† where τ12† <: τ12.
By inspection of the subtype relation, the only types related to arrow types are arrow
types, so τ11† must be an arrow type (→ τ111† τ112†)where τ11 <: τ111† and τ112† <: τ1. Then
by transitivity (twice), τ12† <: τ111† . This means we can apply (ap e11[x:=e1] e12[x:=e1])
yielding type τ112† , which is a subtype of τ1.

• The record construction and projection cases are straightforward.

Proof (of preservation). By cases on the reduction relation. There are two cases:

• If E[(ap (λ x τ1 e1) v2)] ⟶ E[e1[x:=v2]], then by replacement, (ap (λ x τ1 e1) v2)
has a type, and it suffices to show that this type is preserved. Then by inversion
(twice), we know that •, x:τ1 ⊢ e1 : τ and • ⊢ v2 : τ2 where τ2 <: τ1. Then by the

substitution lemma, • ⊢ e1[x:=v2] : τ† where τ† <: τ.

• If E[(project (record [ℓi vi] ... [ℓ v] [ℓj vj] ...) ℓ)] ⟶ E[v], this case is straight-
forward.

QED.
Lemma (Canonical forms).
If • ⊢ v : τ, then:

• If τ is nat, then v is either z or (s v1).

• If τ is (→ τ1 τ2), then v has the form (λ x τ1 e).

• If τ is (Record [ℓ τ1] ...), then v is a record with at least the fields ℓ.

Proof. By induction on the structure of the typing derivation. Only four rules form
values, and those rules correspond to the conditions of the lemma.

Lemma (Progress). If • ⊢ e1 : τ then either e1 is a value or e1 ⟶ e2 for some term e2.
Proof. By induction on the typing derivation:

• • ⊢ x : τ is vacuous.

• • ⊢ z : nat is a value.

29

• If • ⊢ (s e) : nat then by inversion, • ⊢ e : nat. Then by induction, e either takes a
step or is a value. If it’s a value, then (s e) is a value; if it takes a step to e† then (s e)
takes a step to (s e†).

• If • ⊢ (ap e11 e12) : τ then by inversion, • ⊢ e11 : (→ τ11 τ) and • ⊢ e12 : τ12 for some
types τ11 and τ12 such that τ12 <: τ11. Then by induction, each of e11 and e12 either is
a value or takes a step. If e11 takes a step to e11† , then the whole term takes a step to
(ap e11† e12). If e11 is a value v11 and e12 takes a step to e12† , then the whole term takes a
step to (ap v11 e12†). Otherwise, e12 is a value v12. By the canonical forms lemma, v11
has the form (λ x τ11 e111). Then the whole term takes a step to e111[x:=v12].

• • ⊢ (λ x τ1 e) : (→ τ1 τ2) is a value.

• If • ⊢ (record [ℓi ei] ...) : (Record ℓi τi) then by inversion, • ⊢ ei : τi for all ei.
Then by induction, each of those takes a step or is a value. If any takes a step,
then the whole term steps by the leftmost ei to take a step. Otherwise, they are all
values, and the whole term is a value.

• If • ⊢ (project e ℓ) : τf then by inversion, e has a record type with a field ℓ having
type τf. By induction, e either takes a step or is a value v. If it takes a step then the
whole term takes a step. If it’s a value, then by the canonical forms lemma, it’s a
value (record [ℓi vi] ... [ℓ vf] [ℓj vj] ...). Then the whole term takes a step to vf.

Theorem (Type safety). λ-sub is type safe.
Proof. By progess and preservation.

3.4 Compiling with coercions
To say that τ1 <: τ2 is to say that a τ1 can be used wherever a τ2 is expected, but do our run-
time representations actually make that true? In some languages yes, but in many languages
no. We might not want, for example, for record operations to have to do a (linear) search of
field names at run time, but instead to fix the offset at compile time. Such a representation
choice is not incompable with subtyping, if we are willing to interpret subtyping as a co-
ercion between potentially different underlying representation types. For example, record
type (Record [a τa] [b τb] [c τc]) is a subtype of record type (Record [a τa] [c τc]). The
former is represented by a 3-element vector containing the values of fields a, b, and c,
whereas the rather is represented as a 2-element vector containing the values of fields a
and c. We cannot use an instance of the former as the latter directly, but we can coerce it.
The coercion between two types in the subtype relationship is witnessed by the function
converting the subtype to the supertype.

In particular, the witness to the fact that nat <: nat is the identity function on type
nat:

30

nat <: nat ↝ (λ n nat n)
 [nat]

To witness an arrow subtyping, we build a function that applies the witness to the
domain coercion to the argument and the witness to the codomain coercion to the result of
the coerced function:

τ21 <: τ11 ↝ e1
τ12 <: τ22 ↝ e2

(→ τ11 τ12) <: (→ τ21 τ22) ↝ (λ h (→ τ11 τ12) (λ n τ21 (ap e2 (ap h (ap e1 n)))))
 [arr]

The empty record is a supertype of itself, by the identity coercion:

(Record) <: (Record) ↝ (λ r (Record) r)
 [rec-empty]

In subtyping records, we can skip fields and not include them in the supertype:

(Record [mi τi] ...) <: (Record [mj τj] ...) ↝ e

(Record [ℓ τ] [mi τi] ...) <: (Record [mj τj] ...) ↝ (λ r (Record [ℓ τ] [mi τi] ...) (ap e (record [mi (project r mi)] ...)))
 [rec-width]

The depth-subyping record case is hairy. We convert record types by converting one
element and then recursively converting the rest of the record, and then reassembling the
desired result:

τl <: τr ↝ e1
(Record [mi τi] ...) <: (Record [mj τj] ... [mk τk] ...) ↝ e2

(Record [ℓ τl] [mi τi] ...) <: (Record [mj τj] ... [ℓ τr] [mk τk] ...) ↝ (λ r (Record [ℓ τr] [mi τi] ...)
(ap (λ s (Record [mj τj] ... [mk τk] ...)

(record [mj (project s mj)] ...
[ℓ (ap e1 (project r ℓ))]
[mk (project s mk)] ...))

(ap e2 (record [mi (project r mi)] ...))))

 [rec-depth]

The typing rules now translate from a language with subtyping to a language that
doesn’t use subtyping. All of the rules except [app] just translate each term by homo-
morphically translating the subterms:

31

Γ ⊢ x : Γ(x) ↝ x
 [var]

Γ ⊢ z : nat ↝ z
 [zero]

Γ ⊢ e : nat ↝ e1

Γ ⊢ (s e) : nat ↝ (s e1)
 [succ]

Γ ⊢ e : τ ↝ e1 ...

Γ ⊢ (record [ℓ e] ...) : (Record [ℓ τ] ...) ↝ (record [ℓ e1] ...)
 [record]

Γ ⊢ e : (Record [ℓi τi] ... [ℓ τ] [ℓj τj] ...) ↝ e1

Γ ⊢ (project e ℓ) : τ ↝ (project e1 ℓ)
 [project]

Γ, x:τ1 ⊢ e : τ2 ↝ e1

Γ ⊢ (λ x τ1 e) : (→ τ1 τ2) ↝ (λ x τ1 e1)
 [abs]

The only interesting rule is [app], which includes subtyping. It generates the coercion
for the particular subtyping used, and then applies that to coerce the argument to the func-
tion:

Γ ⊢ e1 : (→ τ1 τ) ↝ e11
Γ ⊢ e2 : τ2 ↝ e21

τ2 <: τ1 ↝ ec

Γ ⊢ (ap e1 e2) : τ ↝ (ap e11 (ap ec e21))
 [app]

Exercise 25. Define a Point as a record with fields x and y, which are integers. Define a
ColorPoint as a Point with an additional field, the color, which is a string. Define a function
that takes a Point. Show that your function can be used on a ColorPoint.

4 The polymorphic lambda calculus λ-2

Suppose we want to write the composition function in the simply-typed lambda calculus.
What does it look like? Well, it depends on the types of the functions. We can compose
two (→ nat nat) functions with this:

(λ x1 (→ nat nat) (λ x2 (→ nat nat) (λ y nat (ap x1 (ap x2 y)))))

32

But if the functions have different types, we will need to define a different composition
function. This is awkward!

Polymorphism lets us write one composition function that works for any types. We
introduce type variables ai and abstract over them with Λ:

(Λ a1 (Λ a2 (Λ a3 (λ x1 (→ a2 a3) (λ x2 (→ a1 a2) (λ y a1 (ap x1 (ap x2 y))))))))

We model polymorphism with λ-2, also known as System F.

4.1 Syntax
τ ::= a

 | (all a τ)
 | (→ τ τ)

e ::= x
 | (λ x τ e)
 | (ap e e)
 | (Λ a e)
 | (Ap e τ)

x, y ::= variable-not-otherwise-mentioned
a, b ::= variable-not-otherwise-mentioned

4.2 Dynamic semantics
To give the dynamic semantics of λ-2, we first define values and the evaluation contexts:

v ::= (λ x τ e)
 | (Λ a e)

E ::= []
 | (ap E e)
 | (ap v E)
 | (Ap E τ)

Then the reduction relation has two rules, one for value abstraction applications, and
one for type abstraction applications:

E[(ap (λ x τ e) v)] E[e[x:=v]] [β-val]

E[(Ap (Λ a e) τ)] E[e[a:=τ]] [inst]

The dynamic semantics of λ-2 is given by the evaluation function eval:

eval(e) = v if e ⟶* v

As defined, eval could be partial, as with STLC, it is total on well typed terms.

33

4.3 Static semantics
To give the static semantics of λ-2, we have both type variable environments (which tell us
which type variables are in scope) and typing environments (which map variables to their
types):

Δ ::= •
 | Δ, a

Γ ::= •
 | Γ, x:τ

The main typing judgment relies on two auxiliary judgments. The first tells us whether
a type is well formed (which for this language just means closed):

a ∈ Δ

Δ ⊢ a
 [var]

Δ ⊢ τ1
Δ ⊢ τ2

Δ ⊢ (→ τ1 τ2)
 [arr]

Δ, a ⊢ τ

Δ ⊢ (all a τ)
 [all]

A typing environment is well formed when all the types in it are well formed:

Δ ⊢ •
 [nil]

Δ ⊢ τ
Δ ⊢ Γ

Δ ⊢ Γ, x:τ
 [cons]

Finally, we give the typing judgments for λ-2:

34

Δ ⊢ Γ

Δ; Γ ⊢ x : Γ(x)
 [var]

Δ ⊢ τ1
Δ; Γ, x:τ1 ⊢ e : τ2

Δ; Γ ⊢ (λ x τ1 e) : (→ τ1 τ2)
 [abs]

Δ; Γ ⊢ e1 : (→ τ2 τ)

Δ; Γ ⊢ e2 : τ2

Δ; Γ ⊢ (ap e1 e2) : τ
 [app]

Δ, a; Γ ⊢ e : τ

Δ; Γ ⊢ (Λ a e) : (all a τ)
 [t-abs]

Δ ⊢ τ
Δ; Γ ⊢ e : (all a τ1)

Δ; Γ ⊢ (Ap e τ) : τ1[a:=τ]
 [t-app]

Strictly speaking, every ∆ and every type well-formedness premiss can go away and it
all still works, with type variables acting like constants, but I like knowing where my free
type variables are.

4.4 Church data
λ-2, made of lambdas big and small, may seem to lack much in the way of data, but in fact
it is very rich. Alonzo Church showed how to represent natural numbers and datatypes in
the untyped lambda calculus. STLC is too weak for those encodings to be meaningful, but
they work beautifully in λ-2.

4.4.1 Natural numbers

The natural numbers can be defined as functions that iterate a function. In particular, define
type Nat to be (all a (→ (→ a a) (→ a a))), with

• c0 = (Λ a (λ f (→ a a) (λ x a x))),

• c1 = (Λ a (λ f (→ a a) (λ x a (ap f x)))),

35

• c2 = (Λ a (λ f (→ a a) (λ x a (ap f (ap f x))))),

• and in general, cn as the function that for any type a, iterates an (→ a a) function n
times.

Exercise 26. Define the successor function succ of type (→ Nat Nat).
Exercise 27. Define addition, multiplication, and exponentiation.
Exercise 28 (hard). Define the predecessor function.
Once we have predecessor we can define subtraction, equality, less-than, and more, but

we need a bit more technology before we can define predecessor.

4.4.2 Booleans

The Booleans can be defined as their own elimination rule. In particular, let type Bool =
(all a (→ a (→ a a))). Then define:

• tru = (Λ a (λ x a (λ y a x))), and

• fls = (Λ a (λ x a (λ y a y))).

There’s no need for if-then-else—just apply the Boolean.
Exercise 29. Define not, and, and or.
Exercise 30. Define zero? : (→ Nat Bool).

4.4.3 Products

In general, we can represent datatypes by their elimination principles. For example, we
represent the product (* τ1 τ2) as a function of type (all a (→ τ1 (→ τ2 a)) a). That is, a
pair of a τ1 and a τ2 is a function that, for any type a, you can give it a function that turns a
τ1 and τ2 into an a, and it gives back that a.

The pair value (pair v1 v2) of type (* τ1 τ2) is represented as (Λ a (λ y (→ τ1 (→ τ2 a)) ((y v1) v2))).
Exercise 31. How can we write the selectors fst and snd?
Exercise 32. Now predecessor becomes possible. The idea is to apply the Nat to count

upward, but using a pair to institute a delay.
Exercise 33. Define the recursor from our STLC extension.

4.4.4 Sums

We can represent the sum type (+ τ1 τ2) as its elimination rule (all a (→ (→ τ1 a) (→ (→ τ2 a) a))).
(Write that out in infix.)

Exercise 34. How can we construct sum values? How do we use them?

36

4.4.5 Lists

We can represent a list using its elimination rule, in particular, the type of its fold. Let
(List τ) = (all a (→ a (→ (→ τ (→ a a)) a))).

Exercise 35. Define cons.
Exercise 36. Define sum : (→ (List Nat) Nat).
Exercise 37. Define empty?, first, and rest.

4.4.6 Existentials

We can encode existential types in λ-2. An existential type lets us hide part of the repre-
sentation of a type, and then safely use it without revealing the representation.

Define (ex a τ) to be (all b (→ (all a (→ τ b)) b)).
To create an existential, we must have a value vrep that has some actual type τact, but

we wish to view as type (ex a τ). There must be some type τrep such that τ[a:=τrep] = τact.
Then to create the existential, we write:

(Λ b (λ y (all a (→ τ b)) (ap (Ap y τrep) vrep)))

To use the existential, apply it!
For example, suppose we want to create a value of type (ex a (* a (* (→ a a) (→ a Nat))))

that lets us work abstractly with the naturals. (In particular, we represent a triple containing
zero of abstract type, the successor function of abstract type, and a projection that reveals
the underlying natural.) We could pack that up as:

Counter =

(Λ b (λ y (all a (→ (* a (* (→ a a) (→ a Nat))) b))
(ap (Ap (y (* Nat (* (→ Nat Nat) (→ Nat Nat)))))

(pair c0 (pair succ (λ x Nat x))))))

Then to count to 2, we might write:

(ap (Ap Counter Nat)
(Λ a (λ counter (* a (* (→ a a) (→ a Nat)))

((snd (snd counter))
((fst (snd counter))
((fst (snd counter))
(fst counter)))))))

This is the basis of abstract types as the appear in module and object systems. Of
course, it gets a bit easier to read if we add record types and make existentials primitive or,
better yet, hidden.

Exercise 38. Add existentials to λ-2 without encoding as universals. In particular,
you will need forms for packing and unpacking whose statics and dynamics agree with the
encoding above.

37

Exercise 39. Prove type safety for λ-2.
Exercise 40 (Very difficult). Prove normalization for λ-2.
Consider this alternate definition of Counter:

Counter =

(Λ b (λ y (all a (→ (* a (* (→ a a) (→ a Nat))) b))
(ap (Ap (y (* Nat (* (→ Nat Nat) (→ Nat Nat)))))

(pair c1 (pair succ pred)))))

It should be indistinguishable from the original definition in all contexts.
Exercise 41. Can we prove it?
Exercise 42. Write a generic sorting function that takes a vector and a comparison

function and sorts the vector in place.

5 The higher-order lambda calculus λ-ω

5.1 Syntax
The higher-order calculus λ-ω extends System F with type operators, that is, functions at
the type level:

τ ::= a
 | (→ τ τ)
 | (all a κ τ)
 | (λ a κ τ)
 | (ap τ τ)

In addition to type variables, functions, and universal types (all from System F), we now
have abstraction of types over types ((λ a κ τ)) and application of types to types ((ap τ1 τ2)).

In order to avoid errors at the type computation level, we now have “types of types,”
known as kinds:

κ ::= *
 | (⇒ κ κ)

There are two kind constructors. Kind * is the kind of proper types, that is, types that can
be the types of terms. Kind (⇒ κ1 κ2) is the kind of a type operator that consumes types of
kind κ1 and produces types of kind κ2. For example, the type constructor List has kind

(⇒ * *)—apply it to a term with a type of kind *, like Int, and you get (List Int), a type
of kind *, back.

Note that types in λ-ω are a copy of the terms of STLC in the type level, with one base
kind *.

Terms in λ-ω are the same as terms in System F, except that the type variable in
(Λ a κ e) is decorated with a kind:

38

e ::= x
 | (λ x τ e)
 | (ap e e)
 | (Λ a κ e)
 | (Ap e τ)

In fact, all three forms that bind type variables decorate them with a kind.

5.2 Dynamic semantics
The dynamics for λ-ω are straightforward. Values and evaluation contexts are as in System
F:

v ::= (λ x τ e)
 | (Λ a κ e)

E ::= []
 | (ap E e)
 | (ap v E)
 | (Ap E τ)

There are two reduction rules, as in System F, for applications of λs and instantiations
of Λs:

E[(ap (λ x τ e) v)] E[e[x:=v]] [β-val]

E[(Ap (Λ a κ e) τ)] E[e[a:=τ]] [inst]

5.3 Static semantics
λ-ω’s type system is more complex than what we’ve seen before for two reasons: we are
now doing computation at the type level and we now need to kind-check types.

Kind checking tells us that a type is well-formed in a context that binds type variables
to their kinds. However, we will use the same contexts for type checking, so we will bind
term variables to types and type variables to kind in the same context:

Γ ::= •
 | Γ, x:τ
 | Γ, a:κ

Then the kinding rules are like STLC at the type level:

39

Γ ⊢ a :: Γ(a)
 [var]

Γ ⊢ τ1 :: *
Γ ⊢ τ2 :: *

Γ ⊢ (→ τ1 τ2) :: *
 [arr]

Γ, a:κ ⊢ τ :: *

Γ ⊢ (all a κ τ) :: *
 [all]

Γ, a:κ1 ⊢ τ :: κ2

Γ ⊢ (λ a κ1 τ) :: (⇒ κ1 κ2)
 [abs]

Γ ⊢ τ1 :: (⇒ κ2 κ)

Γ ⊢ τ2 :: κ2

Γ ⊢ (ap τ1 τ2) :: κ
 [app]

Note that → and all form types of kind * from types of kind *.
In order to type check terms, we need a notion of type equivalence that includes compu-

tation in types. The usual theoretical way to do this is to define equivalence as a congruence
that includes beta reduction:

40

τ ≡ τ
 [ref]

τ2 ≡ τ1

τ1 ≡ τ2
 [sym]

τ1 ≡ τ2
τ2 ≡ τ3

τ1 ≡ τ3
 [trans]

τ1 ≡ τ3
τ2 ≡ τ4

(→ τ1 τ2) ≡ (→ τ3 τ4)
 [arr]

τ1 ≡ τ2

(all a κ τ1) ≡ (all a κ τ2)
 [all]

τ1 ≡ τ2

(λ a κ τ1) ≡ (λ a κ τ2)
 [abs]

τ1 ≡ τ3
τ2 ≡ τ4

(ap τ1 τ2) ≡ (ap τ3 τ4)
 [app]

(ap (λ a κ τ1) τ2) ≡ τ1[a:=τ2]
 [β]

Then in the type rules, we would check that types that in other systems need to be equal
are equivalent. However, to type check algorithmically, we instead define type computation
in terms of type evaluation contexts and then β reduction over types:

TE ::= []
 | (→ TE τ)
 | (→ τ TE)
 | (all a κ TE)
 | (λ a κ TE)
 | (ap TE τ)
 | (ap τ TE)

TE[(ap (λ a κ τ1) τ2)] TE[τ1[a:=τ2]] [β-type]

41

Then to compare two types, we fully reduce both of them and compare for equality.
This happens in the rules for application and instantiation.

Γ ⊢ x : Γ(x)
 [var]

Γ ⊢ τ1 :: *
Γ, x:τ1 ⊢ e : τ2

Γ ⊢ (λ x τ1 e) : (→ τ1 τ2)
 [abs]

Γ ⊢ e1 : τ1
Γ ⊢ e2 : τ2

τ1 ⟶* (→ τ2* τ)

τ2 ⟶* τ2*

Γ ⊢ (ap e1 e2) : τ
 [app]

Γ, a:κ ⊢ e : τ

Γ ⊢ (Λ a κ e) : (all a κ τ)
 [tabs]

Γ ⊢ τ :: κ

Γ ⊢ e : τ1
τ1 ⟶* (all a κ τ1*)

Γ ⊢ (Ap e τ) : τ1*[a:=τ]
 [tapp]

6 ML type inference

6.1 STLC revisited
We revisit the simply-typed λ calculus, but with several twists:

• We remove base types such as nat (for now) in favor of uninterpreted type variables
a.

• We add let expressions.

• Most importantly, we leave types implicit.

Here is the syntax of the resulting system:

42

e ::= x
 | (λ x e)
 | (ap e e)
 | (let x e e)

τ ::= a
 | (→ τ τ)

x, y ::= variable-not-otherwise-mentioned
a, b ::= variable-not-otherwise-mentioned

6.1.1 Dynamic semantics

The only values are λ abstractions:

v ::= (λ x e)
E ::= []

 | (ap E e)
 | (ap v E)
 | (let x E e)

The dynamic semantics of this language includes two reduction rules:

E[(ap (λ x e) v)] E[e[x:=v]] [β-val]

E[(let x v e)] E[e[x:=v]] [let]

Note this means that dynamically we can consider (let x e1 e2) as syntactic sugar for
(ap (λ x e2) e1).

6.1.2 Static semantics

The static semantics should be familiar from the simply-typed lambda calculus, since it’s
the same but for one thing: the rule for λ has to “guess” the domain type τ1.

43

Γ ⊢ x : Γ(x)
 [var]

Γ, x:τ1 ⊢ e : τ2

Γ ⊢ (λ x e) : (→ τ1 τ2)
 [abs]

Γ ⊢ e1 : (→ τ2 τ)

Γ ⊢ e2 : τ2

Γ ⊢ (ap e1 e2) : τ
 [app]

Γ ⊢ e1 : τ1
Γ, x:τ1 ⊢ e2 : τ2

Γ ⊢ (let x e1 e2) : τ2
 [let]

Here’s how it works: To type a λ expression, choose any type—made out of type
variables and arrows—for the parameter that lets you type the body. For example, these are
all valid judgments for the identity function:

• • ⊢ (λ x x) : (→ a a)

• • ⊢ (λ x x) : (→ (→ a a) (→ a a))

• • ⊢ (λ x x) : (→ (→ a b) (→ a b))

Whatever type it’s given, it returns the same type. How a variable is used may constrain its
type. For example, to type (λ x (λ y (ap y x))) we have to guess types for x and y such that
y can be applied to x. Suppose we guess a for x. Then we are faced with choosing a type for

y that can be applied to that, like say (→ a b). Then we get the type (→ a (→ (→ a b) b)) for
the whole term. Those aren’t the only types we could have chosen, however, For example,
we could choose (→ a b) for x; then y could be any arrow type (→ (→ a b) τ) for any type
τ.

Exercise 43. Find types for these terms:

• (λ x (λ y x))

• (λ f (λ g (λ x (ap f (ap g x)))))

• (let f (λ x x) (ap f (λ x (λ y x))))

Exercise 44. Find a closed term that has no type. What is the only cause of type errors
in this system?

44

6.1.3 Adding a base type

Let’s make things a bit more interesting by introducing the potential for more type errors.
We add Booleans to the language. We add true and false, and if expressions for
distinguishing between the two:

e ::=
 | true
 | false
 | (if e e e)

v ::=
 | true
 | false

E ::=
 | (if E e e)

τ ::=
 | bool

There are two new reduction rules, for reducing if in the true case and in the false
case:

E[(if true e1 e2)] E[e1] [if-true]

E[(if false e1 e2)] E[e2] [if-false]

The type rules assign type bool to both Boolean expressions. An if expression types
if the condition is a bool and if the branches have the same type as each other:

Γ ⊢ true : bool
 [true]

Γ ⊢ false : bool
 [false]

Γ ⊢ e1 : bool
Γ ⊢ e2 : τ
Γ ⊢ e3 : τ

Γ ⊢ (if e1 e2 e3) : τ
 [if]

Exercise 45. Extend λ-ml with one of these features: products, sums, numbers, records,
recursion, references.

Exercise 46. Show that the term (let f (λ x x) (if true (ap f true) (ap (ap f (λ y y)) false)))
has no type.

45

6.1.4 Introducing let polymorphism

By why not? The term reduces to a Boolean, so shouldn’t it have type bool? It doesn’t
because f is used two different ways. When applied to true, it needs to have type
(→ bool bool), but when applied to (λ y y) it needs to have type (→ (→ bool bool) (→ bool bool))
(because the result of that application is applied to a bool).

However, if we were to reduce the let, we would get (if true (ap (λ x x) true) (ap (ap (λ x x) (λ y y)) false)),
which types fine.

So this suggests a different way to type (let x e1 e2): copy e1 into each occurrence of
x in e2:

Γ ⊢ e2[x:=e1] : τ2

Γ ⊢ (let x e1 e2) : τ2
 [let-copy/wrong]

with this rule, the example from the exercise types correctly. However, other things that
shouldn’t type also type. In particular, a term like (let f (ap true true) true) has type
bool, even though the subterm (ap true true) has no type. To remedy this, we ensure
that e1 has a type, even though we don’t restrict it to have that particular type in e2:

Γ ⊢ e1 : τ1
Γ ⊢ e2[x:=e1] : τ2

Γ ⊢ (let x e1 e2) : τ2
 [let-copy]

This works! But it has two drawbacks:

• Now we are typechecking term e1 multiple times, once for each occurrence of x in
e2. We can actually construct a family of terms that grow exponentially as a result of
this copying.

• In a real programming system, we want to be able to give a type to x because they
often allow bindings with open scopes: (let x e1) for the future. This only makes
sense if we can say what type x has. This is essential for separate or incremental
compilation.

6.2 Type schemes in λ-ml

In the exercise above, x is used at two different types: (→ bool bool) and (→ (→ bool bool) (→ bool bool)).
In fact, if we consider it carefully, it’s safe to use x on an argument of any type τ, and we

get that same τ back. So we could say that x has the type scheme (→ a a) for all types a.
We will write type schemes with the universal quantifier to indicate which type vari-

ables are free to be instantiated in the scheme:

46

σ ::= τ
 | (all a σ)

Note that types in λ-ml (and real ML) do not contain all like System F types do—all
just happens in the front of type schemes. (This is called a prenex type.) This is key to
making type inference possible, since we cannot in general infer System F types.

6.3 Statics
For λ-ml’s statics, we allow type environments Γ to bind variables to type schemes:

Γ ::= •
 | Γ, x:σ

6.3.1 The logical type system

We first give a logical type system, which says which terms has a type but is not very much
help in finding the type. The four rules for the four expression forms in our language are
nearly the same as before; the only difference is in rule [let-poly], allows the bound variable
to have a type scheme instead of a mere monomorphic type (“monotype”):

Γ ⊢ x : Γ(x)
 [var]

Γ, x:τ1 ⊢ e : τ2

Γ ⊢ (λ x e) : (→ τ1 τ2)
 [abs]

Γ ⊢ e1 : (→ τ2 τ)

Γ ⊢ e2 : τ2

Γ ⊢ (ap e1 e2) : τ
 [app]

Γ ⊢ e1 : σ1
Γ, x:σ1 ⊢ e2 : σ2

Γ ⊢ (let x e1 e2) : σ2
 [let-poly]

On the other hand, notice that the domain type inferred for λ is still required to be a mono-
type.

There are two initial rules, which are not syntax directed, but which are used to in-
stantiate type schemes to types and generalize types to type schemes. To instantiate a type
scheme, we can replace its bound variable with any type whatsoever:

47

Γ ⊢ e : (all a σ)

Γ ⊢ e : σ[a:=τ]
 [inst]

Finally, we can generalize any type variable that is not free in the environment Γ:

Γ ⊢ e : σ
a = # Γ

Γ ⊢ e : (all a σ)
 [gen]

This is because any type variable that is not mentioned in Γ is unconstrained, but type
variables that are mentioned might have requirements imposed on them.

Exercise 47. Derive a type for (let f (λ x x) (if true (ap f true) (ap (ap f (λ y y)) false))).
Exercise 48. What types can you derive for (λ x (λ y (ap x y)))? What do they have

in common? What type scheme instantiates to all of them?

6.3.2 The syntax-directed type system

The system presented above allows generalization and instantiation anywhere, but in fact,
these rules are only useful in certain places, because we do not allow polymorphic type
schemes as the domains of functions. The only place that generalization is useful is when
binding the right-hand side of a let, and instantiation is only useful when we lookup
a variable with a type scheme and want to use it. It’s not necessary to apply the rules
anywhere else, so we can combine rule var with rule inst into a new rule [var-inst]:

Γ(x) > τ

Γ ⊢ x : τ
 [var-inst]

The rule uses a relation > for instantiating a type scheme into an arbitrary monotype:

τ > τ
 [mono]

σ[a:=τ1] > τ

(all a σ) > τ
 [all]

Similarly, we combine rule [let-poly] with rule [gen] to get rule [let-gen], which gener-
alizes the right-hand side of the let:

Γ ⊢ e1 : τ1
σ1 = gen⟦ftv(τ1) \ ftv(Γ), τ1⟧

Γ, x:σ1 ⊢ e2 : τ

Γ ⊢ (let x e1 e2) : τ
 [let-gen]

48

The metafunction gen simply generalizes the type into a type scheme with the given
bound variables:

gen : (a ...) τ → σ
gen⟦(), τ⟧ = τ

gen⟦(a ai ...), τ⟧ = (all a gen⟦(ai ...), τ⟧)

The syntax-directed type system presented in this section admits exactly the same pro-
grams as the logical type system from the previous section. Unlike the logical system, it
tells us exactly when we need to apply instantiation and generalization. But it still does
not tell us what types to instantiate type schemes to in rule [var-inst], and it does not tell
us what type to use for the domain in rule abs. To actually type terms, we will need an
algorithm.

Exercise 49. Extend the syntax-directed type system for your extended language.

6.4 Type inference algorithm
The type inference rules presented above yield many possible typings for terms. For exam-
ple, the identity function might have type (→ a a) or (→ bool bool) or (→ (→ bool a) (→ bool a))

and so on. The most general type, however, is (→ a a), since all other terms are instances of
that. The algorithm presented in this section always finds the most general type (if a typing
exists).

6.4.1 Unification

To perform type inference, we need a concept of a type substitution, which substitutes some
monotypes for type variables:

S ::= •
 | S[a:=τ]

Exercise 50. Give a type substitution S such that S(→ a (→ a b))= (→ bool (→ bool (→ c c)))
Type inference will hinge on the idea of unification: Given two types τ1 and τ2, is

there a substitution S that makes them equal: Sτ1 = Sτ2? We will use this, for example,

if we want to apply a function with type (→ τ1 τ) to argument of type τ2. Type variables
represent unknown parts of the types at question, and unification tells us if the types might
be made, by filling in missing information, the same.

The unification procedure takes two types and either produces the unifying substitution,
or fails. In particular, any variable unifies with itself, producing the empty substitution:

a ~ a ↝ •
 [var-same]

A variable a unifies with any other type τ by extending the substitution to map a to τ,
provided that a is not free in τ:

49

a ∉ ftv(τ)

a ~ τ ↝ •[a:=τ]
 [var-left]

(If a ∈ ftv(τ) then they won’t unify and we have a type error. This is the only kind of type
error in a system without base types.)

If a variable appears on the right, we swap it to the left and unify:

τ is not a type variable

a ~ τ ↝ S

τ ~ a ↝ S
 [var-right]

Type bool unifies with itself:

bool ~ bool ↝ •
 [bool]

Finally, two types unify if their domains unify and their codomains unify:

τ11 ~ τ21 ↝ S1
S1τ12 ~ S1τ22 ↝ S2

(→ τ11 τ12) ~ (→ τ21 τ22) ↝ S2∘S1
 [arr]

Note that after τ11 ~ τ21 ↝ S produces a substitution S, we apply that substitution to τ12 and
τ22 before unifying, in order to propagate the information that we’ve collected. Further, the
result of unifying the arrow types is the composition of the substitutions S1 and S2. In
general, when we work with substitutions, we will see that we accumulate and compose
them.

Unification has an interesting property: It finds the most general unifier for any pair
of unifiable types. A substitution S is more general than a substitution S1 if there exists a

substitution S2 such that S1 = S2∘S. That is, if S1 does more substitution than S. So suppose
that τ1 and τ2 are two types, and suppose that S1τ1 = S1τ2. Then the S given by unifying τ1
and τ2 will be more general than (or equal to) S1.

6.4.2 Algorithm W

Now we are prepared to give the actual inference algorithm. It uses one metafunction, inst,
which takes a type scheme and instantiates its bound variables with fresh type variables:

inst : (a ...) σ → τ
inst⟦(a ...), τ⟧ = τ

inst⟦(a ...), (all b σ)⟧ = inst⟦(a ... b1), σ[b:=b1]⟧
 where b1 = # (a ...)

50

The inst metafunction is given a list of type variables to avoid.
Then we have the inference algorithm itself. The algorithm takes as parameters a type

environment and a term to type; if it succeeds, it returns both a type for the term and a
substitution making it so. Let’s start with the simplest rules.

To type check a Boolean, we return bool with the empty substitution:

W(Γ; true) = (•; bool)
 [true]

W(Γ; false) = (•; bool)
 [false]

To type check a variable, we look up the variable in the environment and instantiate the
resulting type scheme with fresh type variables:

τ = inst⟦ftv(Γ), Γ(x)⟧

W(Γ; x) = (•; τ)
 [var]

To type check a λ abstraction, we create a fresh type variable a to use as its domain
type, and we type check the body assuming that the formal parameter has that type a:

a = # Γ
W(Γ, x:a; e) = (S; τ)

W(Γ; (λ x e)) = (S; (→ Sa τ))
 [abs]

Note that while we “guess” a type variable a for the domain, it will be refined (via unifica-
tion) based on how it’s used in the body.

To type check an application is more involved than the other rules we have seen, but
the key operation is unifying the domain type of the operator with the type of the operand.
First, we infer types for e1 and e2, using substitution S1 (the result of typing e1) for typing
e2. Then, we get a fresh type variable a to stand for the result type of the application. We

unify the type of the operator, S2τ1 with the type we need it to have, (→ τ2 a), yielding
substitution S3. Then the composition of the three substitutions, along with result type S3a,
is our result:

W(Γ; e1) = (S1; τ1)

W(S1Γ; e2) = (S2; τ2)

a = # (Γ S1 S2 τ1 τ2)

S2τ1 ~ (→ τ2 a) ↝ S3

W(Γ; (ap e1 e2)) = (S3∘S2∘S1; S3a)
 [app]

51

Note again how the substitutions are threaded through: Substitutions must be applied to
any types or environments that existed before that substitution was created.

For the let rule, we first infer a type for e1, and we generalize that type with respect
to the (updated-by-substitution) type environment S1Γ. Then we bind the resulting type
scheme in the environment for type checking e2:

W(Γ; e1) = (S1; τ1)

σ = gen⟦ftv(τ1) \ ftv(S1Γ), τ1⟧
W(S1Γ, x:σ; e2) = (S2; τ2)

W(Γ; (let x e1 e2)) = (S2∘S1; τ2)
 [let]

Finally, the rule for if works by first type checking its three subterms, threading the
substitutions through. Then it needs to unify the type of e1 with bool, and it needs to unify
the types of e2 and e3 with each other. Either of those is then the type of the result.

W(Γ; e1) = (S1; τ1)

W(S1Γ; e2) = (S2; τ2)

W(S2∘S1Γ; e3) = (S3; τ3)

S3∘S2τ1 ~ bool ↝ S4

S4∘S3τ2 ~ S4τ3 ↝ S5

S = S5∘S4∘S3∘S2∘S1

W(Γ; (if e1 e2 e3)) = (S; S5∘S4τ3)
 [if]

Theorem (Soundness and completeness of W).

• Soundness: If W(•; e) = (S; τ) then • ⊢ e : τ.

• Completeness: If • ⊢ e : τ then W(•; e) = (S; τ1) for some τ1 that τ is a substitution
instance of. (That is, there is some substitution S1 such that S1τ1 = τ.)

Exercise 51. Extend unification and Algorithm W for your extended language.

6.5 Constraint-based type inference
Algorithm W interleaves walking the term and unification. There’s another approach based
on constraints, where we generate a constraint that tells us what has to be true for a term
to type, and then we solve the constraint. This technique is important mostly because it
allows us to extend our type system in particular ways by adding new kinds of constraints.

Our language of constraints C has the trivial true constraint ⊤, the conjunction of
two constraints (∧ C1 C2), a constraint that two types be equal (= τ2 τ2), and a constraint
(∃ a C1) that introduces a fresh type variable for the subconstraint C1. Here is the syntax of
contraints:

52

C ::= ⊤
 | (∧ C C)
 | (= τ τ)
 | (∃ a C)

Then we can write a judgment that takes a constraint and, if possible, solves it, produc-
ing a substitution:

solve(⊤) ↝ •
 [true]

solve(C1) ↝ S1

solve(S1C2) ↝ S2

solve((∧ C1 C2)) ↝ S2∘S1
 [and]

τ1 ~ τ2 ↝ S

solve((= τ1 τ2)) ↝ S
 [equals]

b = # C

solve(C[a:=b]) ↝ S

solve((∃ a C)) ↝ S
 [exists]

Now that we know how to solve contraints, it remains to generate them for a given term.
We do that with the metafunction ⟦Γ ⊢ e : τ⟧, which, given an environment, a term, and a

type, generates the constraints required for the typing judgment Γ ⊢ e : τ to hold:

53

generate : Γ e τ → C
⟦Γ ⊢ x : τ⟧ = (= τ τ1)

 where τ1 = inst⟦ftv(Γ), Γ(x)⟧
⟦Γ ⊢ (λ x e) : τ⟧ = (∃ a (∃ b (∧ (= τ (→ a b)) ⟦Γ, x:a ⊢ e : b⟧)))

 where a = # (Γ τ), b = # (Γ τ a)

⟦Γ ⊢ (ap e1 e2) : τ⟧ = (∃ a (∧ ⟦Γ ⊢ e1 : (→ a τ)⟧ ⟦Γ ⊢ e2 : a⟧))

 where a = # (Γ τ)

⟦Γ ⊢ (let x e1 e2) : τ⟧ = ⟦Γ, x:σ1 ⊢ e2 : τ⟧
 where a = # Γ, C1 = ⟦Γ ⊢ e1 : a⟧, solve(C1) ↝ S, τ1 = Sa, σ1 = gen⟦ftv(τ1) \ ftv(Γ), τ1⟧
⟦Γ ⊢ true : τ⟧ = (= τ bool)

⟦Γ ⊢ false : τ⟧ = (= τ bool)

⟦Γ ⊢ (if e1 e2 e3) : τ⟧ = (∧ ⟦Γ ⊢ e1 : bool⟧ (∧ ⟦Γ ⊢ e2 : τ⟧ ⟦Γ ⊢ e3 : τ⟧))

How can we use this to type a term if we don’t know its type to begin with? Suppose
we want to type a term e in the empty environment. Then we choose a fresh type variable a,
generate the constraint that e has type type, and solve the constraint, yielding a substitition:

solve(⟦• ⊢ e : a⟧) ↝ S

Then we look up the type of a in the resulting substiution: Sa.
Note that for let-free programs, constraint generation is completely separated from

solving. However, when we encounter a let, we still interleave solving to get the general-
ized type of the let-bound variable.

Exercise 52. Extend constraint generation for your extended language.

7 Qualified types
In the previous lecture, we saw how ML infers types for programs that lack type annota-
tions. In this lecture, we see how to extend ML with a principled form of overloading,
similar to how it appears in Haskell and Rust. In particular, we will extend type schemes to
a form (all (a ...) (⇒ P τ)), where P is a logical formula over types that must be satisfied
to use a value having that type scheme.

7.1 Syntax
Our language includes the usual variables, lambda abstractions, applications, and let from
ML, as well as some constants, a condition form, and pairs:

54

e ::= x
 | (λ x e)
 | (ap e e)
 | (let x e e)
 | c
 | (if0 e e e)
 | (pair e e)

The constants include integers, and functions for projecting from pairs, subtraction,
equality, and less-than:

c ::= z
 | fst
snd
=
<

z ::= integer

7.2 Dynamic semantics
Values include constants, lambdas, and pairs of values:

v ::= c
 | (λ x e)
 | (pair v v)

Evaluation contexts are standard, performing left-to-right evaluation for applications
and pairs:

E ::= []
 | (ap E e)
 | (ap v E)
 | (pair E e)
 | (pair v E)
 | (if0 E e e)
 | (let x E e)

We give a reduction relation that includes rules for application and let, two rules for
if0 (true and false), and delta, which handles applications of constants by delegating to a
metafunction:

55

E[(ap (λ x e) v)] E[e[x:=v]] [β-val]

E[(let x v e)] E[e[x:=v]] [let]

E[(if0 0 e1 e2)] E[e1] [if-true]

E[(if0 z e1 e2)] E[e2] [if-false]

 where z ≠ 0

E[(ap c v)] E[δ⟦c, v⟧] [delta]

The metafunction δ gives the results for applying constants to values:

δ : c v → v
δ⟦fst, (pair v1 v1)⟧ = v1

δ⟦snd, (pair v1 v2)⟧ = v2

δ⟦-, (pair z1 z2)⟧ = z1 – z2

δ⟦=, (pair v1 v2)⟧ = v1 == v2 ? 0 : 1

δ⟦<, (pair v1 v2)⟧ = v1 < v2 ? 0 : 1

Note that the functions represented by constants are uncurried, taking pairs of values—this
simplifies our presentation somewhat.

7.3 Static semantics
As in ML the static semantics assigns prenex type schemes to let-bound values, but type
schemes now have an additional component. The syntax of types is as follows.

7.3.1 Syntax of types

Monotypes include type variables, the base type Int, product types, and function types:

τ ::= a
 | Int
 | (Prod τ τ)
 | (→ τ τ)

To represent overloading, we define a fixed set of type classes C, which are used to
construct predicates on types π:

C ::= Eq
 | Ord

π ::= (C τ)

56

For any type τ, the predicate (Eq τ) means that type τ supports equality, and the predicate
(Ord τ) means that type τ supports less-than. In a real system, the set of type classes (and
thus the possible predicates) would be extensible by the user.

A predicate context P is a collection of predicates:

P ::= [π ...]

Then a qualified type ρ is a monotype qualified by some predicate context:

ρ ::= (⇒ P τ)

Then a type scheme is a qualified type generalized over some quantified set of type
variables:

as ::= (a ...)
σ ::= (all as ρ)

For example, type scheme (all (a) (⇒ [(Eq a)] (→ a (→ a Int)))) describes a function
that takes (curried) two arguments of any type a supporting equality and returns an integer.

As in ML, typing environments map variable names to type schemes:

Γ ::= •
 | Γ, x:σ

7.3.2 The types of constants

We can now define the type-ofmetafunction, which gives type schemes for the constants:

type-of : c → σ
type-of⟦z⟧ = (all () (⇒ [] Int))

type-of⟦fst⟧ = (all (a b) (⇒ [] (→ (Prod a b) a)))

type-of⟦snd⟧ = (all (a b) (⇒ [] (→ (Prod a b) b)))

type-of⟦-⟧ = (all () (⇒ [] (→ (Prod Int Int) Int)))

type-of⟦=⟧ = (all (a) (⇒ [(Eq a)] (→ (Prod a a) Int)))

type-of⟦<⟧ = (all (a) (⇒ [(Ord a)] (→ (Prod a a) Int)))

Note that = and < are overloaded.

7.3.3 Instantiation and entailment

Before we can give our main typing relation, we need two auxiliary judgments. The first,
as in ML, relates a type scheme to its instantiations as qualified types:

57

(all () ρ) > ρ
 [mono]

(all (ai ...) ρ0)[a:=τ] > ρ

(all (a ai ...) ρ0) > ρ
 [all]

The second relation is entailment for predicate contexts. This is not strictly necessary
(and omitted from Jones’s paper), but allows us to make predicate contexts smaller when
they are redundant. The first two rules rule say that a predicate context entails itself and
that entailment is transitive.

P ⊩ P
 [ref]

P1 ⊩ P2 P2 ⊩ P3

P1 ⊩ P3
 [trans]

The next rule says that we can remove duplicate predicates from a context:

[πi ... π πj ... πk ...] ⊩ [πi ... π πj ... π πk ...]
 [dup]

The next two rules say that integers support equality and ordering, and that fact need
not be recorded in the context to prove it:

[πi ... πj ...] ⊩ [πi ... (Eq Int) πj ...]
 [eq-int]

[πi ... πj ...] ⊩ [πi ... (Ord Int) πj ...]
 [ord-int]

Finally, equality works on pairs if it works on both components of the pair:

[πi ... (Eq τ1) (Eq τ2) πj ...] ⊩ [πi ... (Eq (Prod τ1 τ2)) πj ...]
 [eq-prod]

7.3.4 Syntax-directed typing

The typing judgment is of the form P | Γ ⊢ e : τ, where P gives constraints on the types
in Γ. Even though it appears on the left, P should be thought of as an out-parameter.

The rule for typing a variable says to look up its type scheme in the environment and
then instantiate the bound variables of the type scheme. The predicate context P from the
instantiated type scheme becomes the predicate context for the judgment:

58

Γ(x) > (⇒ P τ)

P | Γ ⊢ x : τ
 [var-inst]

Typing a constants is substantially the same, except we get its type scheme using the
type-of metafunction:

type-of⟦c⟧ > (⇒ P τ)

P | Γ ⊢ c : τ
 [const-inst]

The rules for lambda abstractions, applications, conditionals, and pairs, as the same as
they would be in ML, except that we thread through and combine the predicate contexts:

P | Γ, x:τ1 ⊢ e : τ2

P | Γ ⊢ (λ x e) : (→ τ1 τ2)
 [abs]

P1 | Γ ⊢ e1 : (→ τ2 τ)

P2 | Γ ⊢ e2 : τ2

P1 ∪ P2 | Γ ⊢ (ap e1 e2) : τ
 [app]

P1 | Γ ⊢ e1 : Int
P2 | Γ ⊢ e2 : τ
P3 | Γ ⊢ e3 : τ

P1 ∪ P2 ∪ P3 | Γ ⊢ (if0 e1 e2 e3) : τ
 [if0]

P1 | Γ ⊢ e1 : τ1
P2 | Γ ⊢ e2 : τ2

P1 ∪ P2 | Γ ⊢ (pair e1 e2) : (Prod τ1 τ2)
 [pair]

Finally, the let rule is where the action is:

P1 | Γ ⊢ e1 : τ1
P ⊩ P1

σ = (all ((ftv(P) ∪ ftv(τ1)) \ ftv(Γ)) (⇒ P τ1))

P2 | Γ, x:σ ⊢ e2 : τ

P2 | Γ ⊢ (let x e1 e2) : τ
 [let-gen]

59

First we type e1, which produces a predicate context P1. Then we apply the entailment
relation to reduce P1 to a context that entails it, P. (This step can be omitted, but it reflects
the idea that we probably want to simplify predicate contexts before including them in type
schemes.) Then we build a type scheme σ by generalizing all the type variables in P and
τ1 that do not appear in Γ, and bind that σ in the environment to type e2. Note that the
resulting predicate context for the judgment is only P2, the constraints required by e2, since
the constraints required by e1 are carried by the resulting type scheme.

Alternatively, we could split the predicates of P1 (or P) into those relevant to τ1, which
we would package up in the type scheme, and those irrelevant to τ2, which we would
propogate upward.

Exercise 53. Use Haskell’s type classes to implement bijections between the natural
numbers and lists.

To get started, install ghc (and be sure that QuickCheck is installed, perhaps by issuing
the command cabal install quickcheck). Put your code in XEnum.hs and use ghc -o
XEnum XEnum.hs && ./XEnum to run your code. Because

Haskell is
whitespace-
sensitive,
copying
code from
webpages
is fraught;
accord-
ingly the
declara-
tions in
the code
below are
all in
XEnum.hs

Here are some declarations to get started, along with an explanation of them.

{-# LANGUAGE ScopedTypeVariables #-}
import Test.QuickCheck
import Numeric.Natural

class XEnum a where
into :: a -> Natural
outof :: Natural -> a

instance XEnum Natural where
into n = n
outof n = n

The class declaration introduces a new predicate XEnum that supports two operations,
into and outof. These are two functions that realize a bijection between the type a and
the natural numbers.

The instance declaration says that the type Natural supports enumeration by giving
the functions that translate from the naturals to the naturals (i.e., the identity function).

For our first substantial instance, fill in the into and outof functions to define a bijec-
tion between the natural numbers and the integers:
instance XEnum Integer where

into x = error "not implemented"
outof n = error "not implemented"
There is more than one way to do this, but it is also easy to make arithmetic errors when

doing it. So we can use Quick Check to help find those errors. Add this declaration to the
end of your program:
prop_inout :: (Eq a, XEnum a) => a -> Bool

60

https://raw.githubusercontent.com/tov/type-systems-seminar/master/exercises/XEnum.hs

prop_inout x = outof (into x) == x
main = quickCheck (prop_inout :: Integer -> Bool)
If you do not see output like +++ OK, passed 100 tests., then you have a bug in your
bijections.

Once you have finished that, add the support for (disjoint) unions. To do that we need
to assume we have two enumerable things and then we are going to add a bijection using
the Either type:
instance (XEnum a , XEnum b) => XEnum (Either a b) where

into (Left x) = error "not implemented"
into (Right x) = error "not implemented"
outof n = error "not implemented"

The idea of this bijection is to use the odd numbers for either Left or Right values, and
use the even numbers for the other. So we can embed two enumerable values into one. Also
test this one with Quick Check, using prop_inout :: (Either Integer Natural) ->
Bool.

Next up, pairs.
instance (XEnum a , XEnum b) => XEnum (a , b) where

into (a , b) = error "not implemented"
outof n = error "not implemented"

The formulas for these ones are more complex; I recommend using Szudzik’s “elegant”
pairing function, found on page 8 of https://pdfs.semanticscholar.org/68e8/7ad59107481bc3cfdf1669706fd0368cce60.
pdf. Page 9 shows the geometric intuition for the bijection. To implement it, you will need
an exact square root function; see https://stackoverflow.com/questions/19965149/
integer-square-root-function-in-haskell for two definitions.

Once you have that all working, define enumerations for lists.
instance XEnum a => XEnum [a] where

into l = error "not implemented"
outof n = error "not implemented"
Be aware that the formulas and the bijections you’ve built work only for infinite sets

(i.e., the naturals, the integers, pairs of them, etc.) If you want to use these bijections on
sets that are finite, you need to add a size operation:
data ENatural = Fin Natural | Inf

class XEnum a where
into :: a -> Natural
outof :: Natural -> a
size :: ENatural

The size of an Either is the sum of the sizes and the size of a pair enumeration is the
product of the sizes. Also note that the corresponding formulas will need adjustment to
handle the case where one of sides is finite. If you get stuck trying to figure out the
formulas, look in this paper: https://www.eecs.northwestern.edu/~robby/pubs/
papers/jfp2017-nfmf.pdf,

61

https://pdfs.semanticscholar.org/68e8/7ad59107481bc3cfdf1669706fd0368cce60.pdf
https://pdfs.semanticscholar.org/68e8/7ad59107481bc3cfdf1669706fd0368cce60.pdf
https://stackoverflow.com/questions/19965149/integer-square-root-function-in-haskell
https://stackoverflow.com/questions/19965149/integer-square-root-function-in-haskell
https://www.eecs.northwestern.edu/~robby/pubs/papers/jfp2017-nfmf.pdf
https://www.eecs.northwestern.edu/~robby/pubs/papers/jfp2017-nfmf.pdf

7.4 Type inference algorithm
The above type system provides a satisfactory account of which terms type and which do
not, but it does not give us an algorithm that we can actually run. In this section, we extend
ML’s Algorithm W for qualified types.

First, we give a helper metafunction for instantiating a type scheme with fresh type
variables:

inst : (a ...) σ → ρ
inst⟦(a ...), (all () ρ)⟧ = ρ

inst⟦(a ...), (all (b bi ...) ρ)⟧ = inst⟦(a ... b1), (all (bi ...) ρ)[b:=b1]⟧
 where b1 = # (bi ... a ...)

Again we use unification. Because unification is applied to monotypes, it is the same
as in ML (except now we have to handle product types as well):

a ~ a ↝ •
 [var-same]

a ∉ ftv(τ)

a ~ τ ↝ •[a:=τ]
 [var-left]

τ is not a type variable

a ~ τ ↝ S

τ ~ a ↝ S
 [var-right]

Int ~ Int ↝ •
 [int]

τ11 ~ τ21 ↝ S1

S1τ12 ~ S1τ22 ↝ S2

(Prod τ11 τ12) ~ (Prod τ21 τ22) ↝ S2∘S1
 [prod]

τ11 ~ τ21 ↝ S1

S1τ12 ~ S1τ22 ↝ S2

(→ τ11 τ12) ~ (→ τ21 τ22) ↝ S2∘S1
 [arr]

Algorithm W for qualified types takes a type environment and a term, and returns a
substitution, a type, and a predicate context: W(Γ; e) = (S; τ; P).

62

To infer the type of a variable or constant, we look up its type scheme (in the en-
vironment or the type-of metafunction, respectively) and instantiate it with fresh type
variables, yielding a qualified type (⇒ P τ). The τ is the type of the variable or constant,
and P is the predicate context that must be satisfied:

(⇒ P τ) = inst⟦ftv(Γ), Γ(x)⟧

W(Γ; x) = (•; τ; P)
 [var]

(⇒ P τ) = inst⟦ftv(Γ), type-of⟦c⟧⟧

W(Γ; c) = (•; τ; P)
 [const]

Lambda abstraction, application, pairing, and the conditional are as before, merely
propagating and combining predicate contexts:

W(Γ; e1) = (S1; τ1; P1)

W(S1Γ; e2) = (S2; τ2; P2)

a = # (Γ S1 S2 τ1 τ2 P1 P2)

S2τ1 ~ (→ τ2 a) ↝ S3

W(Γ; (ap e1 e2)) = (S3∘S2∘S1; S3a; S3(S2P1 ∪ P2))
 [app]

a = # Γ

W(Γ, x:(all () (⇒ [] a)); e) = (S; τ; P)

W(Γ; (λ x e)) = (S; (→ Sa τ); P)
 [abs]

W(Γ; e1) = (S1; τ1; P1)

W(S1Γ; e2) = (S2; τ2; P2)

W(Γ; (pair e1 e2)) = (S2∘S1; (Prod S2τ1 τ2); S2P1 ∪ P2)
 [pair]

W(Γ; e1) = (S1; τ1; P1)

W(S1Γ; e2) = (S2; τ2; P2)

W(S2S1Γ; e3) = (S3; τ3; P3)

S3S2τ1 ~ Int ↝ S4

S4S3τ2 ~ S4τ3 ↝ S5

S = S5∘S4∘S3∘S2∘S1
W(Γ; (if e1 e2 e3)) = (S; S5S4τ3; S5S4(S3(S2P1 ∪ P2) ∪ P3))

 [if0]

63

Note how substitutions must be applied to predicate contexts, just as we apply them to type
environments and types.

Finally, the let rule follows the let rule from the previous section, packaging up the
predicate context generated for e1 in the type scheme assigned to x. We (optionally) assume
a metafunction r:qreduce⟦P⟧ that simplifies the predicate context before constructing the
type scheme.

W(Γ; e1) = (S1; τ1; P1)

P = qreduce⟦P1⟧

σ = (all ((ftv(P) ∪ ftv(τ1)) \ ftv(S1Γ)) (⇒ P τ1))

W(S1Γ, x:σ; e2) = (S2; τ2; P2)

W(Γ; (let x e1 e2)) = (S2∘S1; τ2; P2)
 [let]

7.5 Evidence translation
Exercise 54. What is the most general type scheme of the term (λ (x) (λ (y) (if0 (= (pair x y)) x y)))?

How would you implement such a function—in particular, how does it figure out the
equality for a generic/unknown type parameter? Well, our operational semantics cheated by
relying on Racket’s underlying polymorphic equal? function. Racket’s equal? relies on
Racket’s object representations, which include tags that distinguish number from Booleans
from pairs, etc. But what about in a typed language that does not use tags and thus cannot
support polymorphic equality?

One solution is called evidence passing, wherein using a qualified type requires passing
evidence that it is inhabited, where this evidence specifies some information about how to
perform the associated operations. In our type classes example, the evidence is the equality
or less-than function specialized to the required type. (In a real evidence-passing imple-
mentation such as how Haskell is traditionally implemented, the evidence is a dictionary of
methods.)

We can translate implicitly-typed λ-qual programs like the above into programs that
pass evidence explicitly. We do this by typing them in an evidence environment, which
names the evidence for each predicate:

Δ ::= [(x π) ...]

We can use the evidence environment to summon or construct evidence if it’s available.
In particular, the judgment Δ ⊩ e : π uses evidence environment Δ to construct e, which is
evidence of predicate π. In particular, if π is (Eq τ) then e should be an equality function

of type (→ (Prod τ τ) Int); if π is (Ord τ) then e should be a less-than function of type

(→ (Prod τ τ) Int).
For base type Int, the evidence is just a primitive function performing the correct

operation:

64

Δ ⊩ =/int : (Eq Int)
 [eq-int]

Δ ⊩ </int : (Ord Int)
 [ord-int]

For a product type, we summon evidence for each component type, and then construct
the equality function for the product.

Δ ⊩ e1 : (Eq τ1)
Δ ⊩ e2 : (Eq τ2)

eout = (λ p (if0 (ap e1 (pair (ap fst (ap fst p)) (ap fst (ap snd p))))
(ap e2 (pair (ap snd (ap fst p)) (ap snd (ap snd p))))
1))

Δ ⊩ eout : (Eq (Prod τ1 τ2))
 [eq-prod]

Other types are looked up in the evidence environment:

[(xi πi) ... (x π) (xj πj) ...] ⊩ x : π
 [lookup]

Note that if difference evidence appears for the same repeated predicate, then the behavior
can be incoherent.

The evidence translation uses two more auxiliary judgments. The first is for applying a
term that expect evidence to its expected evidence:

Δ ⊩ [] ⇒ e ⇝ e
 [nil]

Δ ⊩ eev : π
Δ ⊩ [πi ...] ⇒ (ap e eev) ⇝ eout

Δ ⊩ [π πi ...] ⇒ e ⇝ eout
 [cons]

The second abstracts over the evidence expected by a term based on its context:

[] ⊩ e ⇝ [] ⇒ e
 [nil]

[(xi πi) ...] ⊩ (λ x e) ⇝ [πout ...] ⇒ eout

[(x π) (xi πi) ...] ⊩ e ⇝ [π πout ...] ⇒ eout
 [cons]

Four rules of the typing judgment are unremarkable, simply passing the evidence envi-
ronment through and translating homomorphically:

65

Δ | Γ, x:τ1 ⊢ e ⇝ e† : τ2

Δ | Γ ⊢ (λ x e) ⇝ e† : (→ τ1 τ2)
 [abs]

Δ | Γ ⊢ e1 ⇝ e1† : (→ τ2 τ)

Δ | Γ ⊢ e2 ⇝ e2† : τ2

Δ | Γ ⊢ (ap e1 e2) ⇝ (ap e1† e2†) : τ
 [app]

Δ | Γ ⊢ e1 ⇝ e1† : Int

Δ | Γ ⊢ e2 ⇝ e2† : τ

Δ | Γ ⊢ e3 ⇝ e3† : τ

Δ | Γ ⊢ (if0 e1 e2 e3) ⇝ (if0 e1† e2† e3†) : τ
 [if0]

Δ | Γ ⊢ e1 ⇝ e1† : τ1

Δ | Γ ⊢ e2 ⇝ e2† : τ2

Δ | Γ ⊢ (pair e1 e2) ⇝ (pair e1† e2†) : (Prod τ1 τ2)
 [pair]

The rules for variables and constants take a polymorphic value and apply it to the re-
quired evidence for any predicates contained in its qualified type, using the evidence appli-
cation judgment:

Γ(x) > (⇒ P τ)

Δ ⊩ P ⇒ x ⇝ e

Δ | Γ ⊢ x ⇝ e : τ
 [var]

type-of⟦c⟧ > (⇒ P τ)

Δ ⊩ P ⇒ c ⇝ e

Δ | Γ ⊢ c ⇝ e : τ
 [const]

The let form, as above, generalizes, by abstracting the right-hand side e1 over evidence
corresponding to its inferred evidence context:

66

Δ1 | Γ ⊢ e1 ⇝ e1† : τ1
Δ1 ⊩ e1† ⇝ P ⇒ e1‡

σ = (all ((ftv(P) ∪ ftv(τ1)) \ ftv(Γ)) (⇒ P τ1))

Δ2 | Γ, x:σ ⊢ e2 ⇝ e2† : τ

Δ2 | Γ ⊢ (let x e1 e2) ⇝ (let x e1‡ e2†) : τ
 [let]

Exercise 55. Rust uses monomorphization to implement generics and traits. It does this
by duplicating polymorphic code, specializing it at each required type. Write a relation that
formalizes monomorphization for describes λ-qual.

8 The Lambda Cube: λ-cube

The λ-cube provides a systematic organization of types systems that captures a range of
expressiveness, from the simply-typed lambda calculus (in section 2) through the polymor-
phic lambda calculus (in section 4), the higher-order lambda calculus (in section 5), and up
to λC, the calculus of constructions, which is the focus of this section.

8.1 Syntax
The basic idea of the structure of the λ cube is to eliminate the distinction between types
and terms and then use typing judgments to control which classes of expression are allowed
in type positions. To get started, we first just get rid of the distinction between types and
terms using this syntax:

e, τ ::= x
 | (λ (x : τ) e)
 | (ap e e)
 | s
 | (x : τ → τ)

s ::= * | □

The first three expression forms are the familiar variables, lambda abstractions, and
application expressions. The * is the type of types, just as in section 4, and □ is analgous,
but one level up. That is, it represents the type of kinds or, expressions that have the type □
are expressions that themselves compute kinds.

The final expression form, →, represents function types, but it is dependent. In its sim-
plest form, the type (x : τ1 → τ2), where x does not appear free in τ2, represents functions
from τ1 to τ2. In general, however, the variable x can appear free in τ2, meaning that
the type of the result of the function can depend on the argument actually supplied to the
function.

67

This notation specializes to the earlier type systems we considered; as an example, re-
call the function composition operator from the beginning of section 4. Here’s the original
version of the function:

(Λ a1
(Λ a2

(Λ a3
(λ x1 (→ a2 a3)

(λ x2 (→ a1 a2)
(λ y a1

(ap x1 (ap x2 y))))))))
In the new language, the Λ and λ are not distinguished by the constructor, but a Λ is the

same thing as a λ where the argument has type *. So, this is the composition operator in
λ-cube:

(λ (a1 : *)
(λ (a2 : *)

(λ (a3 : *)
(λ (x1 : (i2 : a2 → a3))

(λ (x2 : (i1 : a1 → a2))
(λ (y : a1)

(ap x1 (ap x2 y))))))))
We also adjust the syntax to require an extra set of parentheses and a colon to make it a

little bit easier to read expressions (because other distinctions are removed).
Another example that’s worth considering is the identity function. Here it is:
(λ (α : *)

(λ (x : α)
x))

This term is what you would expect, simply replacing the capital Λ with the lowercase
λ and adding a *. But consider its type:

(α : * → (x : α → α))

This is a type that cannot be expressed with just the arrow. Or, in other words, this is a
dependent type because the variable bound by the outer function type is used in its body. It
is the same as the type (all α (→ α α)) but we can use → for both the function type and for
the all type.

8.2 Typing Rules
First, we just assert that * is a □

Γ ⊢ * : □
 [axiom]

and then we have what appears to be the standard variable rule:

68

⊢ Γ

Γ ⊢ x : Γ(x)
 [variable]

but note the premise that ensures that the environment is well-formed. In earlier type
systems, that was a self-contained check that the types were well-formed. Now, because
we have eliminated the distinction between types and terms, it uses the typing judgment
itself:

⊢ •
 [nil]

Γ ⊢ A : s

⊢ Γ, x:A
 [cons]

The application rule handles all forms of abstraction:

Γ ⊢ F : (x : A → B) Γ ⊢ a : A

Γ ⊢ (ap F a) : B[x:=a]
 [application]

It looks something like a combination of the application and type application rule from
λ-2. Like the normal function application rule, we make sure that the two subexpressions
have appropriate types: one a function and one a matching argument type (the type in the
parameter of the function type). Like the type application rule, however, we perform a
substitution, computing the type of the result of the function based on the argument that
was actually supplied.

Sometimes, the type A that we get on the function is different than the type A on the
argument. This rule allows us to do some computation in order to make two such types
match up to each other, where the ≡ relation allows us to perform β substitutions in the
types as needed.

Γ ⊢ A : B1 B1 ≡ B2 Γ ⊢ B2 : s

Γ ⊢ A : B2
 [conversion]

In order to type check a λ abstraction,

Γ, x:A ⊢ b : B Γ ⊢ (x : A → B) : s

Γ ⊢ (λ (x : A) b) : (x : A → B)
 [abstraction]

we check the body, on the assumption that the argument has the type on the λ. The second
premise ensures that the type that we get for the result itself makes sense.

The final rule covers function type expressions.

Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ (x : A → B) : s2
 [λC]

69

This version allows either * or □ for both the argument and the result type. This general-
ity allows us to capture the full Calculus of Constructions, which forms the basis for the
theorem proving system Coq.

If we restrict the rule so that both s1 and s1 are *, then the resulting type system is
equivalent to the simply-typed lambda calculus. Intuitively, this restriction means that our
functions can accept arguments that are values, i.e., can be described by types, but not by
kinds.

If we allow s1 to be either * or □, but restrict s2 so it can be only *, we get the poly-
morphic lambda calculus, λ-2. This means that functions can now play the role of all,
expressions, accepting types, but always returning only a type. Various other restrictions in
this spirit correspond to various other type systems in the literature.

70

	1 The let-zl language
	1.1 Syntax
	1.2 Dynamic semantics
	1.2.1 Errors

	1.3 Static semantics
	1.3.1 Type safety

	1.4 Termination

	2 The simply-typed lambda calculus -st
	2.1 Syntax
	2.2 Dynamic semantics
	2.3 Static semantics
	2.3.1 Type safety

	2.4 An extension
	2.5 Normalization
	2.6 Adding nontermination

	3 -sub: subtyping with records
	3.1 Syntax
	3.2 Dynamic semantics
	3.3 Static semantics
	3.3.1 Subtyping
	3.3.2 Type safety

	3.4 Compiling with coercions

	4 The polymorphic lambda calculus -2
	4.1 Syntax
	4.2 Dynamic semantics
	4.3 Static semantics
	4.4 Church data
	4.4.1 Natural numbers
	4.4.2 Booleans
	4.4.3 Products
	4.4.4 Sums
	4.4.5 Lists
	4.4.6 Existentials

	5 The higher-order lambda calculus -
	5.1 Syntax
	5.2 Dynamic semantics
	5.3 Static semantics

	6 ML type inference
	6.1 STLC revisited
	6.1.1 Dynamic semantics
	6.1.2 Static semantics
	6.1.3 Adding a base type
	6.1.4 Introducing let polymorphism

	6.2 Type schemes in -ml
	6.3 Statics
	6.3.1 The logical type system
	6.3.2 The syntax-directed type system

	6.4 Type inference algorithm
	6.4.1 Unification
	6.4.2 Algorithm W

	6.5 Constraint-based type inference

	7 Qualified types
	7.1 Syntax
	7.2 Dynamic semantics
	7.3 Static semantics
	7.3.1 Syntax of types
	7.3.2 The types of constants
	7.3.3 Instantiation and entailment
	7.3.4 Syntax-directed typing

	7.4 Type inference algorithm
	7.5 Evidence translation

	8 The Lambda Cube: -cube
	8.1 Syntax
	8.2 Typing Rules

