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Abstract
Alms is a general-purpose programming language that supports
practical affine types. To offer the expressiveness of Girard’s linear
logic while keeping the type system light and convenient, Alms
uses expressive kinds that minimize notation while maximizing
polymorphism between affine and unlimited types.

A key feature of Alms is the ability to introduce abstract affine
types via ML-style signature ascription. In Alms, an interface can
impose stiffer resource usage restrictions than the principal usage
restrictions of its implementation. This form of sealing allows the
type system to naturally and directly express a variety of resource
management protocols from special-purpose type systems.

We present two pieces of evidence to demonstrate the validity
of our design goals. First, we introduce a prototype implementation
of Alms and discuss our experience programming in the language.
Second, we establish the soundness of the core language. We also
use the core model to prove a principal kinding theorem.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords Affine types, linear logic, type systems, polymor-
phism, modules

1. A Practical Affine Type System
Alms is a practical, general-purpose programming language with
affine types. Affine types enforce the discipline that some values
are not used more than once, which in Alms makes it easy to
define new, resource-aware abstractions. General-purpose means
that Alms offers a full complement of modern language features
suitable for writing a wide range of programs. Practical means that
Alms is neither vaporware nor a minimal calculus—it is possible to
download Alms today and try it out.

Rationale. Resource-aware type systems divide into two camps:
foundational calculi hewing closely to linear logic, and implemen-
tations of special-purpose type systems designed to solve special
problems. We argue that a general, practical type system based on
Girard’s linear logic (1987) can naturally and directly express many
of the special cases, such as region-based memory management,
aliasing control, session types, and typestate. To this end, the lan-
guage must satisfy several desiderata:
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module type RW LOCK = sig
type (α, β) array — array of α identified by β
type excl — exclusive access
type shared — shared access
type β@γ : A — grants γ-level access to array β

val new : int → α →

E

β. (α, β) array

val acquireW : (α, β) array → β@excl
val acquireR : (α, β) array → β@shared
val release : (α, β) array → β@γ → unit

val set : (α, β) array → int → α → β@excl → β@excl
val get: (α, β) array → int → β@γ → α × β@γ

end

Figure 1. An interface for reader-writer locks (§2)

Convenience. Unlimited values are the common case, so working
with them is as smooth as in a conventional language.

Expressiveness. A wide variety of resource-aware type systems
appear naturally as idioms.

Familiarity. It is easy to use and understand.

Pragmatics. It provides the trappings of a modern, high-level pro-
gramming language, such as algebraic datatypes, pattern match-
ing, exceptions, concurrency, and modules.

Soundness. It has a clear theoretical foundation.

We show that Alms meets these criteria.
Alms employs a dependent kind system to determine whether a

particular type is affine or unlimited and to support polymorphism
over affine and unlimited types. This approach may sound compli-
cated, but in practice it is no stranger or harder to understand than
the type systems of other functional programming languages.

Affine types, a weakening of linear types, forbid duplication of
some values; unlike with linear types, all values may be dropped.
This flexibility is appropriate to a high-level, garbage-collected lan-
guage, and it interacts better with other features such as exceptions.

Our Contributions. This paper introduces the programming lan-
guage Alms, its implementation, and its basic theory:

• We describe the design of Alms, whose novel features include
precise kinds for affine type constructors, and demonstrate how
it expresses a variety of resource-aware idioms (§2).
• Our implementation is a usable, full-featured prototype in

which we have written several thousand lines of code (§3).
• Alms rests on a firm theoretical basis. We provide a formal

model (§4) and establish essential theoretical properties (§5).

Our implementation and full proofs are available at www.ccs.neu.
edu/~tov/pubs/alms.
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2. Learn Alms in 2.5 Pages
Alms is a typed, call-by-value, impure functional language with
algebraic data types, pattern matching, reference cells, threads,
exceptions, and modules with opaque signature ascription. Alms
reads like Ocaml (Leroy et al. 2008) but is explicitly typed. In
most cases local type inference renders explicit type instantiation
unnecessary.

We introduce Alms through a series of examples. Consider a
simple Alms function, deposit, that updates one element of an array
by adding an integer:

let deposit (a: int Array.array) (acct: int) (amount: int) =
Array.set a acct (Array.get a acct + amount)

This function has a race condition between the read and the write,
so we may want to use a lock to enforce mutual exclusion:

let deposit (a: int Array.array) (acct: int)
(amount: int) (lock: Lock.lock) =

Lock.acquire lock;
Array.set a acct (Array.get a acct + amount);
Lock.release lock

Affine data. Locks can ensure mutual exclusion, but using them
correctly is error-prone. A rather coarse alternative to ensure mu-
tual exclusion is to forbid aliasing of the array altogether. If we have
the only reference to an array then no other process can operate on
it concurrently. In Alms, we do this by declaring an interface that
includes a new, abstract array type:

module type AF ARRAY = sig
type α array : A
val new : int → α → α array
val set : α array → int A−→ α A−→ α array
val get : α array → int A−→ α × α array

end
module AfArray : AF ARRAY = struct . . . end

The notation “: A” specifies that type α AfArray.array has kind A,
as in affine, which means that any attempt to duplicate a reference
to such an array is a type error. Two points about the types of
AfArray.get and AfArray.set are worth noting:

• Each must return an array because the caller cannot reuse the
reference to the array supplied as an argument.
• Type τ1 A−→ τ2 has kind A, which means that it may be used

at most once.1 This is necessary because reusing a function
partially applied to an affine value would reuse that value.

We now rewrite deposit to use the AF ARRAY interface:

let deposit (a: int AfArray.array) (acct: int) (amt: int) =
let (balance, a) = AfArray.get a acct in

AfArray.set a acct (balance + amt)

If we attempt to use an AfArray.array more than once without
single-threading it, a type error results:

let deposit (a: int AfArray.array) (acct: int) (amt: int) =
let (balance, ) = AfArray.get a acct in

AfArray.set a acct (balance + amt)

Alms reports that the affine variable a is duplicated.
Implementing AfArray is just a matter of wrapping the primitive

array type and operations, and sealing the module with an opaque
signature ascription:

1 It is tempting to call this an affine function, but standard terminology says
that an affine function uses its argument at most once, whereas here we have
the type of a function itself usable at most once. Whether an Alms function
is affine is determined by the kind of the type of its formal parameter.

module AfArray : AF ARRAY = struct
type α array = α Array.array

let new = Array.new
let set (a: α array) (ix: int) (v: α) = Array.set a ix v; a
let get (a: α array) (ix: int) = (Array.get a ix, a)

end

The original array type α Array.array has kind U, as in unlimited,
because it places no limits on duplication. We can use it to represent
an abstract type of kind A, however, because U is a subkind of
A, and Alms’s kind subsumption rule allows assigning an abstract
type a greater kind than that of its concrete representation. This
is somewhat akin to Standard ML’s treatment of equality types
(Milner et al. 1997) and Ocaml’s treatment of type constructor
variance (Leroy et al. 2008). In SML, eqtype is subsumed by type,
in that signature matching can abstract an equality type to a non-
equality type but not vice versa.

We need not change new at all, and get and set are modified
slightly to return the array as required by the interface.

Affine capabilities. The affine array interface is quite restrictive.
Because it requires single-threading an array through the program,
it cannot support operations that do not actually require exclusive
access to the array. However, Alms supports creating a variety of
abstractions to suit our needs. One way to increase our flexibility
is to separate the reference to the array from the capability to read
and write the array. Only the latter needs to be affine.

For example, we may prefer an interface that supports “dirty
reads,” which do not require exclusive access but are not guaranteed
to observe a consistent state:

module type CAP ARRAY = sig
type (α, β) array
type β cap : A
val new : int → α →

E

β. (α, β) array × β cap
val set : (α, β) array → int → α → β cap → β cap
val get : (α, β) array → int → β cap → α × β cap

val dirtyGet : (α, β) array → int → α
end

In this signature, (α, β) array is now unlimited and β cap is affine.
Type array’s second parameter, β, is a “stamp” used to tie it to
its capability, which must have type β cap (where β matches). In
particular, the type of new indicates that it returns an existential
containing an array and a capability with matching stamps. The
existential guarantees that the stamp on an array can only match
the stamp on the capability created by the same call to new.

Operations set and get allow access to an array only when
presented with the matching capability. This ensures that set and
get have exclusive access with respect to other sets and gets. They
no longer return the array, but they do need to return the capability.
On the other hand, dirtyGet does not require a capability and
should not return one.

For example, the CAP ARRAY interface allows us to shuffle an
array while simultaneously computing an approximate sum:

let shuffleAndDirtySum (a: (α, β) CapArray.array)
(cap: β CapArray.cap) =

let th1 = Thread.fork (λλ → inPlaceShuffle a cap) in
let th2 = Thread.fork (λλ → dirtySumArray a) in

(Thread.wait th1,Thread.wait th2)

To implement CAP ARRAY, we need suitable representations
for its two abstract types. We represent CAP ARRAY’s arrays by
the primitive array type, and capabilities by type unit, which is
adequate because these capabilities have no run-time significance.



module A = Array

module CapArray : CAP ARRAY = struct
type (α, β) array = α A.array
type β cap = unit

let new (size: int) (init: α) = (A.new size init, ())
let set (a: α A.array) (ix: int) (v: α) = A.set a ix v
let get (a: α A.array) (ix: int) = (A.get a ix, ())
let dirtyGet = A.get

end

Type unit has kind U, but as in the previous example, we can ab-
stract it to A to match the kind of β CapArray.cap. The implemen-
tation of the operations is in terms of the underlying array oper-
ations, with some shuffling to ignore capability arguments (in set
and get) and to construct tuples containing () to represent the ca-
pability in the result (in new and get).2

Capabilities are values. Capabilities such as β CapArray.cap of-
ten represent the state of a resource, but in Alms they are also or-
dinary values. They may be stored in immutable or mutable data
structures, packed into exceptions and thrown, or sent over com-
munication channels like any other value. For example, suppose
we would like a list of array capabilities. Lists are defined thus in
the standard library:

type α̂ list = Nil | Cons of α̂ × α̂ list

The type variables we have seen until now could only be instanti-
ated with unlimited types, but the diacritic on type variable α̂ in-
dicates that α̂ may be instantiated to any type, whether affine or
unlimited.

Whether a list should be treated as affine or unlimited depends
on whether the contents of the list is affine or unlimited. Alms
represents this fact by giving the list type constructor a dependent
kind, where kind 〈α̂〉 denotes the kind of α̂:

α̂ list : 〈α̂〉 — list has kind Πα̂. 〈α̂〉
That is, the kind of a list is the same as the kind of its element type:
type int list has kind U, whereas β CapArray.cap list has kind A.

In general, the kind of a type is the least upper bound of the
kinds of the types that occur directly in its representation. For
example:

type (α̂, β̂) r = α̂ × β̂ — 〈α̂〉 t 〈β̂〉
type (α̂, β̂) s = int × β̂ — 〈β̂〉
type (α̂, β̂) t = T1 of α̂ | T2 of (β̂, α̂) t — 〈α̂〉 t 〈β̂〉
type (α̂, β̂) u = U1 | U2 of (β̂, α̂) u — U
type (α̂, β̂) v = α̂ × (unit → β̂) — 〈α̂〉
type (α̂, β̂) w = α̂ × (unit 〈β̂〉−−→ unit) — 〈α̂〉 t 〈β̂〉

Because both α̂ and β̂ are part of the representation of (α̂, β̂) r,
it must be affine if either of its parameters is affine. On the other
hand, the phantom parameter α̂ is not part of the representation of
(α̂, β̂) s, so that has kind 〈β̂〉. The kinds of t and u are the least
solutions to these inequalities:

κ((α̂, β̂) t) w κ(α̂) κ((α̂, β̂) u) w U
κ((α̂, β̂) t) w κ((β̂, α̂) t) κ((α̂, β̂) u) w κ((β̂, α̂) u)

The kind of each type must be at least as restrictive as the kinds of
all of its alternatives.

For (α̂, β̂) v, the kind of β̂ does not appear because the domain
and codomain of a function type are not part of the function’s rep-
resentation. Instead, function types have their kind in a superscript
as in the definition of type w. We saw this in the AfArray example,

2 If you think this unit shuffling is unnecessary, we agree (§7).

where the superscripts were all A. (When the kind is U, we often
omit it.) We discuss the kinds of function types and their subtyping
in more depth in §4.3.

More possibilities. The rules of Alms are flexible enough to ex-
press a wide variety of designs. For example, the ability to store
capabilities in data structures allows us to create a more dynamic
interface than the static capabilities of CapArray:

module type CAP LOCK ARRAY = sig
include CAP ARRAY
val new : int → α →

E

β. (α, β) array
val acquire : (α, β) array → β cap
val release : (α, β) array → β cap → unit

end

This signature changes the type of new to return an array (with
unique tag β) but no capability. To operate on the array, one needs
to request a capability using acquire. Subsequent attempts to ac-
quire a capability for the same array block until the capability is
released.

We implement CAP LOCK ARRAY in terms of CapArray
without any privileged knowledge about the representation of its
capabilities. The implementation relies on mvars, synchronized
variables based Id’s M-structures (Barth et al. 1991). An α̂ mvar
may hold a value of type α̂ or it may be empty. While an mvar may
contain an affine value, the mvar itself is always unlimited. This is
safe because calling take on a non-empty mvar removes the value
and returns it, while take on an empty mvar blocks until another
thread puts a value in it.

To implement CAP LOCK ARRAY we now represent an array
as a pair of the underlying (α, β) CapArray.array and an mvar to
store its capability:

module CapLockArray : CAP LOCK ARRAY = struct
module A = CapArray
type (α, β) array = (α, β) A.array × β cap MVar.mvar

let new (size: int) (init: α) =
let (β, a, cap) = A.new size init in

(a,MVar.new cap)

let acquire (( ,mvar): (α, β) array) = MVar.take mvar
let release (( ,mvar): (α, β) array) (cap: β cap) =
MVar.put mvar cap

let set ((a, ): (α, β) array) = A.set a
let get ((a, ): (α, β) array) = A.get a
. . .

end

The new operation creates a new array-capability pair and stores
the capability in an mvar. Operations acquire and release use
the mvar component of the representation, while the old oper-
ations such as set must be lifted to project out the underlying
CapArray.array.

There are many more possibilities. Figures 1 and 2 show two in-
terfaces for reader-writer locks, which at any one time allow either
exclusive read-write access or shared read-only access. Signature
RW LOCK (figure 1 on the first page) describes dynamic reader-
writer locks. The signature declares nullary types excl and shared
and an affine, binary type constructor (·@ ·). Capabilities now have
type β@γ, where β ties the capability to a particular array and γ
records whether the lock is exclusive or shared. Operation set re-
quires an exclusive lock (β@excl), but get allows γ to be shared or
excl.

Signature FRACTIONAL (figure 2) describes static reader-
writer locks based on fractional capabilities (Boyland 2003). As
in the previous example, the capability type (β, γ) cap has a sec-
ond parameter, which in this case represents a fraction of the whole



module type FRACTIONAL = sig
type (α, β) array
type 1
type 2
type γ/δ
type (β, γ) cap : A
val new : int → α →

E

β. (α, β) array × (β, 1) cap

val split : (β, γ) cap → (β, γ/2) cap × (β, γ/2) cap
val join : (β, γ/2) cap × (β, γ/2) cap → (β, γ) cap

val set : (α, β) array → int → α →
(β, 1) cap → (β, 1) cap

val get : (α, β) array → int →
(β, γ) cap → α × (β, γ) cap

end

Figure 2. Another interface for reader-writer locks

capability. The fraction is represented using type constructors 1, 2,
and (· / ·). A capability of type (β, 1) cap grants exclusive access
to the array with tag β, while a fraction less than 1 such as 1/2 or
1/2/2 indicates shared access. There are operations split, which
splits a capability whose fraction is γ into two capabilities of frac-
tion γ/2, and join, which combines two γ/2 capabilities back into
one γ capability. Again, set requires exclusive access but get does
not.

Syntax matters. Given CapLockArray as defined above, we can
rewrite deposit to take advantage of it:

open CapLockArray

let deposit (a: (int, β) array) (acct: int) (amt: int) =
let cap = acquire a in
let (balance, cap) = get a acct cap in
let cap = set a acct (balance + amt) cap in

release a cap

While this gets the job done, the explicit threading of the capability
can be inconvenient and hard to read. To address this, Alms pro-
vides preliminary support for an alternative syntax inspired by a
proposal by Mazurak et al. (2010):

let deposit (a: (int, β) array) (acct: int) (amt: int) =
let !cap = acquire a in

set a acct (get a acct cap + amt) cap;
release a cap

The pattern !cap bound by let marks cap as an “imperative vari-
able,” which means that within its scope, functions applied to cap
are expected to return a pair of their real result and the new ver-
sion of cap. Alms transforms this code into the explicitly-threaded
version above. Currently this transformation happens before type
checking, which means that it cannot compromise soundness but
also cannot exploit type information.

3. Implementation and Experience
Our prototype, implemented in 16k lines of Haskell, is available at
www.ccs.neu.edu/~tov/pubs/alms. Besides a usable interpreter,
it includes all the example code from this paper and other Alms
examples illustrating a variety of concepts:

• A capability-based interface to Berkeley Sockets ensures that
the protocol to set up a socket is followed correctly. This library
also shows how exceptions may be used for error recovery in
the presence of affine capabilities.
• An echo server is built on top of the socket library.

• Two session types (Gay et al. 2003) libraries demonstrate dif-
ferent approaches to alternation: one uses anonymous sums and
the other uses algebraic datatypes for named branches.
• Our version of Sutherland and Hodgman (1974) re-entrant poly-

gon clipping uses session types to connect stream transducers.
• The Alms standard library implements higher-order coercions

for checked downcasts which can, for example, turn a function
of type (unit U−→ unit) U−→ thread into a function of type (unit
A−→ unit) U−→ thread by adding a dynamic check.

These examples are not the last word on what can be done in
a language like Alms. Haskell’s type classes (Wadler and Blott
1989), a general mechanism invented to solve specific problems,
have since found myriad unanticipated uses. Similarly, a practical,
general form of substructural types as offered by Alms likely has
many applications waiting to be uncovered.

We have now written several thousand lines of code in Alms,
and this experience has led to improvements in both its design and
our skill at using what it has to offer. For example, an earlier version
of Alms had only unlimited ( U−→) and affine ( A−→) arrows, but Alms’s
behavioral contract library motivated the introduction of arrows
whose kinds involve type variables (e.g., 〈α̂〉−−→). In particular, we
found ourselves writing the same function multiple times with
different qualifiers in the argument types, and the addition of usage
qualifier expressions eliminates this redundancy.

4. The Calculus aλms

We model Alms with a calculus based on System Fω<:, the higher-
order polymorphic λ calculus with subtyping (Pierce 2002). Our
calculus, aλms , makes several important changes to Fω<::

• Our type system’s structural rules are limited. In particular
contraction, which duplicates variables in a typing context to
make them accessible to multiple subterms, applies only to
variables whose type is of the unlimited kind. Variables of affine
or polymorphic kind cannot be contracted.
• Our kind system is enriched with dependent kinds.
• Our kind system is also enriched with variance on type opera-

tors (Steffen 1997), which allows abstract type constructors to
specify how their results vary in relation to their parameters.
• Type operators are limited to first-order kinds—that is, type

operators may not take type operators as parameters.
• Universally-quantified type variables are bounded only by a

kind, not by a type.
• The subtyping relation is induced by the subtyping rule for

functions, whereby an unlimited-use function may be supplied
where a one-use function is expected.

The calculus aλms also includes more types and terms than a
minimal presentation of Fω<:. Because we are interested in practical
issues, we think it is important that our model include products,3

sums, mutable references, and non-termination.
We do not model modules directly in aλms , but its higher-kinded

type abstraction makes aλms a suitable target for the first-order
fragment of Rossberg et al.’s (2010) “F-ing modules” translation.

3 In linear logic terms, our calculus (like Alms) supplies multiplicative
products (⊗) and additive sums (⊕) directly. Additive products (&) are
easily encoded by

τ1 & τ2 , ∀α:A. (τ1
A−→ α) + (τ2

A−→ α)
ϕ1tϕ2−−−−−→ α

[e1, e2] , Λα:A.λk . case k of ι1 x1 → x1 e1; ι2 x2 → x2 e2,

where ϕ1 and ϕ2 are the kinds of τ1 and τ2.

http://www.ccs.neu.edu/~tov/pubs/alms


ϕ ::= q | 〈α〉 | ϕ1 t ϕ2 | ϕ1 u ϕ2 (usage qualifiers)
κ ::= ϕ | Παv.κ (kinds)

τ ::= α | λα.τ | τ1 τ2 | ∀α:κ.τ | τ1
ϕ−→ τ2 (types)

| 1 | (+) | (×) | aref

e ::= x | λx:τ.e | e1 e2 | Λα:κ.v | e[τ ] (terms)
| 〈〉 | 〈e1, e2〉 | case e1 of 〈x1, x2〉 → e2
| ι1 e | ι2 e | case e of ι1 x→ e1; ι2 y → e2
| fix e | new e | swap e1 e2 | delete e | ptr `

v ::= λx:τ.e | Λα:κ.v | 〈〉 | 〈v1, v2〉 (values)
| ι1 v | ι2 v | ptr `

Γ,Σ ::= · | α:κ | x:τ | `:τ | Γ1,Γ2 (typing contexts)

(q,v,t,u)

A

U

(v,v,t,u)

±

+ −

�

v1 · v2 = v

· ± − + �
± ± ± ± �
− ± + − �
+ ± − + �
� � � � �

(qual. constants) (variances) (variance composition)

Figure 3. Syntax of aλms

4.1 Syntax
We begin with the syntax of aλms in figure 3. Terms (e) include
the usual terms from System F (variables, abstractions, applica-
tions, type abstractions, and type applications), several forms for
data construction and elimination (nil, pairs, pair elimination, sum
injections, and sum elimination), recursion (fix e), and several op-
erations on reference cells (allocation, linear swap, and dealloca-
tion). Location names (ptr `) appear at run time but are not present
in source terms. Values (v) are standard.

Types (τ ) include type variables, type-level abstraction and ap-
plication, universal quantification, function types, and type con-
structor constants for unit, sums, products, and references. As in
Alms, the function arrow carries a usage qualifier (ϕ), which spec-
ifies whether the function is unlimited or one-use.

The two constant usage qualifiers (q), U for unlimited and A for
affine, are the bottom and top of the two-element lattice in figure 3.
Now consider the K combinator Λα:〈α〉.Λβ:〈β〉.λx:α.λy:β.x
partially applied to a value: K[τ1][τ2] v. Whether it is safe to dupli-
cate this term depends on whether it is safe to duplicate v, and this
is reflected in the instantiation of α. To express this relationship, we
introduce usage qualifier expressions (ϕ), which form a bounded,
distributive lattice over type variables with U and A as bottom and
top. We can thus give K type ∀α:〈α〉.∀β:〈β〉.α U−→ β 〈α〉−−→ α.

Qualifier expressions are the base kinds of aλms—that is, the
kinds that classify proper types that may in turn classify values. To
classify type operators, kinds (κ) also include dependent product
kinds, written Παv.κ. This is the kind of a type operator that,
when applied to a type with kind ϕ, gives a type with kind [ϕ/α]κ.
For example, the kind of the Alms list type constructor in §2 is
Πα+.〈α〉, which means that list τ has the same kind as τ .4

The superscript + in kind Πα+.〈α〉 means that list is a covari-
ant (or monotone) type constructor: if τ1 is a subtype of τ2 then
list τ1 is a subtype of list τ2. Variances (v) form a four-point lattice
(figure 3). A type operator may also be contravariant (−), where the
result varies inversely with the argument; omnivariant (�), where
argument may vary freely without affecting the result; or invariant
(±) where the argument may not vary at all without producing a

4 Whereas Alms uses ML’s conventional postfix notation for type-level
application, aλms uses prefix application.

s; e 7−→ s′; e′ (small-step reduction)

s; (λx:τ.e) v 7−→ s; [v/x]e

s; (Λα:κ.v)[τ ] 7−→ s; [τ/α]v

s; fix v 7−→ s; v (fix v)

s; new v 7−→ s ] {` 7→ v}; ptr `

s ] {` 7→ v1}; swap (ptr `) v2 7−→ s ] {` 7→ v2}; 〈ptr `, v1〉
s ] {` 7→ v}; delete (ptr `) 7−→ s; 〈〉

s; e

s;E[e]

7−→
7−→

s′; e′

s′;E[e′]

E ::= [ ] | E e | v E | E[τ ] | 〈E, e〉 | 〈v,E〉 (evaluation
| case E of 〈x1, x2〉 → e | ι1 E | ι2 E contexts)
| case E of ι1 x→ e1; ι2 y → e2
| fix E | new E | swap E e | swap v E | delete E

s ::= {} | {` 7→ v} | s1 ] s2 (stores)

Figure 4. Operational semantics (selected rules)

subtyping-unrelated result. We define a composition operation (·)
on variances, where v1 · v2 is the variance of the composition of
type operators having variances v1 and v2.

The kinds of the type constructors for sums and references
may aid understanding. The sum type constructor (+) has kind
Πα+.Πβ+.〈α〉 t 〈β〉. This means that the kind of a sum type is
at least as restrictive as the kinds of its disjuncts. It is covariant in
both arguments, which means that τ1 + τ2 is a subtype of τ ′1 + τ ′2 if
τ1 is a subtype of τ ′1 and τ2 is a subtype of τ ′2. The reference type
constructor, on the other hand, has kind Πα±.A. This means that
reference cells are always affine and that their types do not support
subtyping in either direction.

Typing contexts (Γ or Σ) associate type variables with their
kinds, variables with their types, and locations with the types of
their contents. By convention, we use Γ for typing contexts that in-
clude neither affine variables nor locations, and we use Σ for typing
contexts that may include locations and affine (or indeterminate)
variables. We use dom(Γ) to refer to the type variables, variables,
and locations mapped by a context.

We define the free type variables in a variety of syntactic forms
(ftv(e), ftv(τ), ftv(κ), etc.) in the standard way. We use locs(e)
to denote the set of location names present in term e. There are no
binders for locations.

4.2 Operational Semantics
The operational semantics of aλms is mostly a standard call-by-
value reduction semantics. We give a selection of rules in figure 4.
The reduction relation ( 7−→) relates configurations (s; e) compris-
ing a store and a term. A store maps locations (`) to values (v).
Stores are taken to be unordered and do not repeat location names.

The rules for reference operations are worth noting. In store s,
new v chooses a fresh location `, adding v to the store at location `
and reducing to the reference ptr `. The operation swap (ptr `) v2
requires that the store have location ` holding some value v1. It
swaps v2 for v1 in the store, returning a pair of a reference to
` and value v1. Finally, delete (ptr `) also requires that the store
contain `, which it then removes from the store. This means that
freeing a location can result in a dangling pointer, which would
cause subsequent attempts to access that location to get stuck. Our
type system prevents this.



Γ ` κ kind κ is well formed (fig. 6)
Γ ` κ1 <: κ2 kind κ1 is subsumed by κ2 (fig. 6)
Γ ` α ∈ τ l v type τ varies v-ly when α increases (fig. 7)
Γ ` τ : κ type τ has kind κ (fig. 7)
Γ ` τ1 <:v τ2 type τ1 is v-related to type τ2 (fig. 7)
Γ ` Σ � ϕ context Σ is bounded by qualifier ϕ (fig. 8)
` (Γ0; Σ0),Σ′ Γ; Σ

extending Γ0; Σ0 with Σ′ gives Γ; Σ (fig. 8)
Γ; Σ B e : τ term e has type τ (fig. 9)
Σ1 B s : Σ2 store s has type Σ2 (fig. 10)
B s; e : τ configuration s; e has type τ (fig. 10)

Figure 5. Type system judgments

Γ ` κ (kind well-formedness)

OK-QUAL

ftv(ϕ) ⊆ dom(Γ)

Γ ` ϕ

OK-ARR
Γ, α:〈α〉 ` κ

if α ∈ ftv(κ) then + v v

Γ ` Παv.κ

Γ ` κ1 <: κ2 (subkinding)

KSUB-QUAL

Γ |= ϕ1 v ϕ2

Γ ` ϕ1 <: ϕ2

KSUB-ARR
v1 v v2 Γ, α:〈α〉 ` κ1 <: κ2

Γ ` Παv1.κ1 <: Παv2.κ2

Figure 6. Statics (i): kinds

4.3 Static Semantics
Our type system involves a large number of judgments, which we
summarize in figure 5. In several cases, we omit premises concern-
ing well-formedness of contexts, which clutter the presentation and
do not add anything of interest. The omitted premises appear in the
extended version of this paper.

Kind judgments. Judgments on kinds appear in figure 6. The first
judgment, Γ ` κ , determines whether a kind κ is well formed in
typing context Γ. A base kind (i.e., a usage qualifier expression)
is well formed provided that Γ specifies a kind for all of its free
variables. A dependent product kind Παv.κ is well formed if
Γ maps all of its free variables, provided it satisfies a second
condition: whenever the bound type variable α is free in κ—that
is, when the kind is truly dependent—then variance v must be + or
±. This rules out incoherent kinds such as Πα−.〈α〉 that classify
no useful type operator but whose presence breaks the kinding
relation’s monotonicity property (see lemma 4).

The second judgment is subkinding: Γ ` κ1 <: κ2. As we will
see, if a type has kind κ1, then it may be used where κ1 or any
greater kind is expected. For dependent product kinds the subkind-
ing order is merely the product order on the variance and the result
kind, but for base kinds the relation relies on an interpretation of
qualifier expressions.

We interpret qualifier expressions via a valuation V , which is
a map from type variables to qualifier constants. We extend V’s
domain to qualifier expressions:

V(q) = q V(ϕ1 t ϕ2) = V(ϕ1) t V(ϕ2)

V(〈α〉) = V(α) V(ϕ1 u ϕ2) = V(ϕ1) u V(ϕ2)

We need to interpret qualifier expressions under a typing context:

Definition 1 (Consistent valuations). A valuation V is consistent
with a typing context Γ if for all α:ϕ ∈ Γ, V(α) v V(ϕ).

Thus, a valuation is consistent with a context if it corresponds to a
potential instantiation of the type variables, given that context.

Definition 2 (Qualifier subsumption). We say that ϕ1 is subsumed
by ϕ2 in Γ, written Γ |= ϕ1 v ϕ2, if for all valuations V consistent
with Γ, V(ϕ1) v V(ϕ2).

In other words, in all possible instantiations of the type variables in
Γ, qualifier ϕ1 being A implies that ϕ2 is A.

Kinding and variance. The first two judgments in figure 7, for
computing variances and giving kinds to types, are defined by mu-
tual induction. It should be clear on inspection that the definitions
are well-founded. Judgment Γ ` α ∈ τ l v means that type
variable α appears in type τ at variance v, or in other words, that
type operator λα.τ has variance v. Rules V-VAR and V-BOT say
that type variables appear positively with respect to themselves and
omnivariantly with respect to types in which they are not free.
Rule V-ABS says that a type variable appears in a type operator
λβ.τ at the same variance that it appears in the body τ . The re-
maining three rules are more involved:

• By rule V-APP, the variance of a type variable in a type ap-
plication comes from both the operator and the operand. The
variance of α in τ1 τ2 is at least the variance of α in τ1 and at
least the variance of α in the τ2 composed with the variance of
operator τ1. This makes sense: if τ is a contravariant type oper-
ator, then α appears negatively in τ α but positively in τ (τ α).
• By rule V-ALL, the variance of α in ∀β:κ.τ is at least its

variance in τ . However, if α appears in κ then it is invariant in
∀β:κ.τ . This reflects the fact that universally-quantified types
are related only if their bounds (κ) match exactly, so changing a
type variable that appears in κ produces an unrelated type. (This
means that aλms is based on the kernel variant of Fω<: (Pierce
2002).)

• By rule V-ARR, the variance of α in a function type τ1
ϕ−→ τ2 is

at least its variance in the codomain τ2 and at least the opposite
(composition with −) of its variance in the domain τ1. This
reflects function argument contravariance. The variance of α is
at least + if it appears in the qualifier expression ϕ.

The second judgment, Γ ` τ : κ, assigns kinds to well formed
types. Rule K-VAR merely looks up the kind of a type variable
in the context. Rules K-ABS and K-APP are the usual rules for
dependent abstraction and application, with two small changes in
rule K-ABS. First, it associates α with itself in the context, as
α:〈α〉, which ensures that occurrences of α in τ can be reflected
in κ. Second, it appeals to the variance judgment to determine the
variance of the type operator. Rule K-ALL assigns a universal type
the same kind as its body, but with A replacing α. This is necessary
because the resulting kind is outside the scope of α. Qualifier A is
a safe bound for any instantiation of α, and no terms have types
that lose precision by this choice. The kind of an arrow type, in
rule K-ARR, is just the qualifier expression attached to the arrow.
The remaining rules give kinds for type constructor constants.

Type equivalence and dereliction subtyping. The last judgment
in figure 7 is subtyping. The subtyping relation is parametrized by a
variance v, which gives the direction of the subtyping: Γ ` τ1 <:+

τ2 is the usual direction, judging τ1 a subtype of τ2. In terms of
subsumption, this means that values of type τ1 may be used where
values of type τ2 are expected. The other variances are useful in
defining the relation in the presence of v-variant type operators:
(<:−) gives the inverse of the subtyping relation, (<:±) relates only
equivalent types, and (<:�) relates all types. We can see how this
works this in rule TSUB-APP. To determine whether τ11 τ12 is a



Γ ` α ∈ τ l v (variance of type variables with respect to types)

V-VAR

Γ ` α ∈ α l +

V-BOT
α 6∈ ftv(τ)

Γ ` α ∈ τ l �

V-ABS
Γ, β:〈β〉 ` α ∈ τ l v

Γ ` α ∈ λβ.τ l v

V-APP
Γ ` α ∈ τ1 l v1 Γ ` α ∈ τ2 l v2

Γ ` τ1 : Πβv3.κ3

Γ ` α ∈ τ1 τ2 l v1 t (v2 · v3)

V-ALL
Γ, β:κ ` α ∈ τ l v1

v2 = if α ∈ ftv(κ) then ± else �
Γ ` α ∈ ∀β:κ.τ l v1 t v2

V-ARR
Γ ` α ∈ τ1 l v1 Γ ` α ∈ τ2 l v2

v3 = if α ∈ ftv(ϕ) then + else �

Γ ` α ∈ τ1
ϕ−→ τ2 l −v1 t v2 t v3

Γ ` τ : κ (kinding of types)

K-VAR
α:κ ∈ Γ

Γ ` α:κ

K-ABS
Γ, α:〈α〉 ` τ : κ

Γ, α:〈α〉 ` α ∈ τ l v
Γ ` λα.τ : Παv.κ

K-APP
Γ ` τ1 : Παv.κ

Γ ` τ2 : ϕ

Γ ` τ1 τ2 : [ϕ/α]κ

K-ALL
Γ, α:κ ` τ : ϕ

Γ ` ∀α:κ.τ : [A/α]ϕ

K-ARR
Γ ` τ1 : ϕ1

Γ ` τ2 : ϕ2

Γ ` τ1
ϕ−→ τ2 : ϕ

K-UNIT

Γ ` 1 : U

K-SUM

Γ ` (+) : Πα+.Πβ+.〈α〉 t 〈β〉

K-PROD

Γ ` (×) : Πα+.Πβ+.〈α〉 t 〈β〉

K-REF

Γ ` aref : Πα±.A

Γ ` τ1 <:v τ2 (subtyping)

TSUB-EQ

τ1 ≡ τ2
Γ ` τ1 <:v τ2

TSUB-TRANS
Γ ` τ1 <:v τ2 Γ ` τ2 <:v τ3

Γ ` τ1 <:v τ3

TSUB-OMNI

Γ ` τ1 <:� τ2

TSUB-CONTRA

Γ ` τ2 <:−v τ1

Γ ` τ1 <:v τ2

TSUB-ABS
Γ, α:〈α〉 ` τ1 <:v τ2

Γ ` λα.τ1 <:v λα.τ2

TSUB-APP
Γ ` τ11 : Παv1.κ1 Γ ` τ21 : Παv2.κ2

Γ ` τ11 <:v τ21 Γ ` τ12 <:v·(v1tv2) τ22

Γ ` τ11 τ12 <:v τ21 τ22

TSUB-ALL

Γ, α:κ ` τ1 <:v τ2

Γ ` ∀α:κ.τ1 <:v ∀α:κ.τ2

TSUB-ARR

Γ ` τ11 <:−v τ21 Γ ` τ12 <:v τ22
Γ ` ϕ1 <:v ϕ2

Γ ` τ11
ϕ1−−→ τ12 <:v τ21

ϕ2−−→ τ22

Figure 7. Statics (ii): types

subtype of τ21 τ22, we take v to be +, yielding

Γ ` τ11 : Παv1.κ1 Γ ` τ21 : Παv2.κ2

Γ ` τ11 <:+ τ21 Γ ` τ12 <:v1tv2 τ22

Γ ` τ11 τ12 <:+ τ21 τ22
.

This means that for the subtyping relation to hold:

• The operators must be related in the same direction, so that τ11
is a subtype of τ21.
• The operands must be related in the direction given by the

variances of the operators. For example, if both operators are
covariant, then the operands must vary in the same direction, so
that τ12 is a subtype of τ22. If both operators are contravariant,
then the operands must vary in the opposite direction. If the
operators are invariant then the operands cannot vary at all, but
if they are omnivariant then τ11 τ ′12 is a subtype of τ21 τ ′22 for
any τ ′12 and τ ′22.

Rule TSUB-EQ says that subtyping includes type equivalence
(τ1 ≡ τ2), which is merely β equivalence on types. Rule TSUB-
OMNI allows any pair of types to be related by �-variant subtyping,
and rule TSUB-CONTRA says that the opposite variance sign gives
the inverse relation. Rules TSUB-ABS and TSUB-ALL specify that
type operators and universally-quantified types are related if their
bodies are.

Rule TSUB-ARR is more than the usual arrow subtyping rule.
Beyond the usual contravariance for arguments and covariance for
results, it requires that qualifiers ϕ1 and ϕ2 relate in the same

direction. This rule is the source of non-trivial subtyping in aλms ,
without which subtyping would relate only equivalent types. The
rule has two important implications.

First, an unlimited-use function can always be used where a
one-use function is expected. This corresponds to linear logic’s
usual dereliction rule, which says that the ! (“of course!”) modality
may always be removed. ILL (Bierman 1993) has a rule:

∆ ` e : !A

∆ ` derelict e : A
DERELICTION.

Dereliction is syntax-directed in this rule, but for practical program-
ming we consider that as too inconvenient. Thus, our subtyping re-
lation supports dereliction as needed.

For example, the function for creating a new thread in Alms,
Thread.fork, has type

A

α̂. (unit A−→ α̂) U−→ α̂ thread, which means
that Thread.fork will not call its argument more than once. How-
ever, this should not stop us from passing an unlimited-use func-
tion to Thread.fork, and indeed we can. Dereliction subtyping al-
lows us to use a value of type unit U−→ α̂ where a value of type
unit A−→ α̂ is expected. Alternatively, by domain contravariance,
we can use Thread.fork where a value of type

A

α̂. (unit U−→ α̂) U−→
α̂ thread is expected. In this case subsumption allows us to forget
Thread.fork’s promise not to reuse its argument.

The other important implication of dereliction subtyping will
become clearer once we see how qualifier expressions are assigned
to function types. Subsumption makes it reasonable to always as-
sign functions the most permissive safe usage qualifier, because



Γ ` Σ � ϕ (bound of typing context)

B-NIL

Γ ` · � U

B-CONSA
Γ ` Σ � ϕ1 Γ ` κ

Γ ` Σ, α:κ � ϕ1

B-CONSX
Γ ` Σ � ϕ1 Γ ` τ : ϕ2

Γ ` Σ, x:τ � ϕ1 t ϕ2

B-CONSL
Γ ` Σ � ϕ1 Γ ` τ : ϕ2

Γ ` Σ, `:τ � A

` (Γ0; Σ0),Σ′ Γ1; Σ1 (typing context extension)

X-NIL

` (Γ; Σ), · Γ; Σ

X-CONSU
Γ0 ` τ : U

` (Γ0, x:τ ; Σ0),Σ′ Γ; Σ

` (Γ0; Σ0), x:τ,Σ′ Γ; Σ

X-CONSA
Γ0 ` τ : ϕ

` (Γ0; Σ0, x:τ),Σ′ Γ; Σ

` (Γ0; Σ0), x:τ,Σ′ Γ; Σ

Figure 8. Statics (iii): typing contexts

subsumption then allows us to use them in a less permissive con-
text. Dereliction subtyping applies only to function types because
in both the aλms calculus and Alms language only function types
carry qualifiers. For instance, Alms has no separate types intU for
unlimited integers and intA for affine integers. Integers are always
unlimited. If a programmer wants an affine version of int, she can
create it in Alms using the module system.

Context judgments. Figure 8 defines two judgments on contexts.
Judgment Γ ` Σ � ϕ, which will be important in typing functions,
computes an upper bound ϕ on the qualifiers of all the types in
context Σ. If a context contains any locations, it is bounded by A;
otherwise, its bound is the least upper bound of the qualifiers of all
the types of variables in the context.

The second judgment shows how environments are extended by
variable bindings. The typing judgment for terms will use two typ-
ing contexts: Γ holds environment information that may be safely
duplicated, such as type variables and variables of unlimited type,
whereas Σ holds information, such as location types and affine vari-
ables, that disallows duplication. Given contexts Γ0 and Σ0, judg-
ment ` (Γ0; Σ0),Σ′  Γ; Σ extends them by the variables and
types in Σ′ to get Γ and Σ. Any variables may be placed in Σ,
but only variables whose types are known to be unlimited may be
placed in Γ, since Γ may be duplicated.

Term judgment. The typing judgment for terms appears in fig-
ure 9. The judgment, Γ; Σ B e : τ , uses two typing contexts in the
style of DILL (Barber 1996): the unlimited environment Γ and the
affine environment Σ. When typing multiplicative terms such as ap-
plication, we distribute Γ to both subterms but partition Σ between
the two:

Γ; Σ1 B e1 : τ1
ϕ−→ τ2 Γ; Σ2 B e2 : τ1

Γ; Σ1,Σ2 B e1 e2 : τ2
T-APP

Unlike DILL, not all types in Σ are necessarily affine. Since types
whose usage qualifier involves type variables are not known to be
unlimited, we place those in Σ, to ensure that we do not duplicate
values that might turn out to be affine once universally-quantified
types are instantiated.

The other multiplicative rules are T-PAIR for product introduc-
tion, T-UNPAIR for product elimination, and T-SWAP for reference
updates. Note that T-SWAP does not require that the type of the

reference in its first parameter match the type of the value in its
second—in other words, swap performs a strong update. To type
the term case e of 〈x1, x2〉 → e1, rule T-UNPAIR first splits the
affine environment into Σ1 for typing subterm e and Σ2 for sub-
term e1. It invokes the context extension relation (figure 8) to ex-
tend Γ and Σ2 with bindings for x1 and x2 in order to type e1. The
context extension relation requires that variables not known to be
unlimited be added to Σ2.

The rule for sum elimination, T-CHOOSE, is both multiplicative
and additive: the affine context is split between the term being
destructed and the branches of the case expression. However, the
portion of the context given to the branches is shared between them,
because only one or the other will be evaluated. Rule T-CHOOSE
also uses the context extension relation to bind the pattern variables
for the branches.

Rules T-NEW and T-DELETE introduce and eliminate reference
types in the usual way. Likewise, the sum introduction rules T-INk
and type abstraction rule T-TABS are standard. Rules T-VAR,
T-PTR, and T-UNIT are standard for an affine calculus but not a
linear one, as they implicitly support weakening by allowing Σ
to contain unused bindings. Rule T-FIX is also standard, modulo
the reasonable constraint that its parameter function be unlimited,
since the reduction rule for fix makes a copy of the parameter.

The type application rule T-TAPP supports subkinding, because
it requires only that the kind of the actual type parameter be a sub-
kind of that of the formal parameter. This is the rule that supports
the sort of type abstraction that we used in our examples of §2 to
construct affine capabilities. For example, the rule lets us instantiate
affine type variable α with unlimited unit type 1:

Γ; Σ B (Λα:A.λx:α.e) : ∀α:A.α
ϕ−→ τ

Γ ` 1 : U Γ ` U <: A

Γ; Σ B (Λα:A.λx:α.e)[1] : 1
ϕ−→ τ

T-TAPP

Within its scope, α is considered a priori affine, regardless of how
it may eventually be instantiated. This term types only if x appears
in affine fashion in e.

This brings us finally to T-ABS, the rule for typing term-level λ
abstractions. To type a term λx:τ1.e, rule T-ABS uses the context
extension relation to add x:τ1 to its contexts and types the body
e in the extended contexts. It also must determine the qualifier ϕ
that decorates the arrow. Because abstractions close over their free
variables, duplicating a function also duplicates the values of its
free variables. Therefore, the qualifier of a function type should
be at least as restrictive as the qualifiers of the abstraction’s free
variables. To do this, rule T-ABS appeals to the context bounding
judgment (figure 8) to find the least upper bound of the usage
qualifiers of variables in the affine environment, and it requires that
the function type’s qualifier be equally restrictive.

This refines linear logic’s usual promotion rule, which says that
the ! modality may be added to propositions that in turn depend
only on !-ed resources. In ILL, we have

!∆ ` e : A

!∆ ` promote e : !A
PROMOTION,

where !∆ is a context in which all assumptions are of the form
x : !B. As with dereliction, in our system it only makes sense to
apply promotion to function types.

Our treatment of promotion indicates why we need the explicit
weakening rule T-WEAK, which allows discarding unused portions
of the affine environment. In order to give a function type the
best qualifier possible, we need to remove from Σ any unused
variables or locations that might otherwise raise the bound on Σ,
and the algorithmic version of the type system as implemented in



Γ; Σ B e : τ (typing of terms)

T-SUBSUME

Γ; Σ B e : τ ′ Γ ` τ ′ <:+ τ

Γ; Σ B e : τ

T-WEAK
Γ; Σ B e : τ

Γ; Σ,Σ′ B e : τ

T-VAR
x:τ ∈ Γ,Σ

Γ; Σ B x : τ

T-PTR
`:τ ∈ Σ

Γ; Σ B ptr ` : aref τ

T-ABS
` (Γ; Σ), x:τ1 Γ′; Σ′

Γ′; Σ′ B e : τ2 Γ ` Σ � ϕ
Γ; Σ B λx:τ1.e : τ1

ϕ−→ τ2

T-APP

Γ; Σ1 B e1 : τ1
ϕ−→ τ2 Γ; Σ2 B e2 : τ1

Γ; Σ1,Σ2 B e1 e2 : τ2

T-TABS
Γ, α:κ; Σ B v : τ

Γ; Σ B Λα:κ.v : ∀α:κ.τ

T-TAPP
Γ; Σ B e : ∀α:κ.τ Γ ` τ ′ : κ′ Γ ` κ′ <: κ

Γ; Σ B e[τ ′] : [τ ′/α]τ

T-UNIT

Γ; Σ B 〈〉 : 1

T-PAIR
Γ; Σ1 B e1 : τ1 Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B 〈e1, e2〉 : τ1 × τ2

T-UNPAIR
Γ; Σ1 B e : τ1 × τ2 ` (Γ; Σ2), x1:τ1, x2:τ2 Γ′; Σ′ Γ′; Σ′ B e1 : τ

Γ; Σ1,Σ2 B case e of 〈x1, x2〉 → e1 : τ

T-INk
Γ; Σ B e : τk

Γ; Σ B ιk e : τ1 + τ2

(k∈{1,2})

T-CHOOSE
Γ; Σ B e : τ1 + τ2 ` (Γ; Σ′), x1:τ1 Γ1; Σ1 Γ1; Σ1 B e1 : τ ` (Γ; Σ′), x2:τ2 Γ2; Σ2 Γ2; Σ2 B e2 : τ

Γ; Σ,Σ′ B case e of ι1 x1 → e1; ι2 x2 → e2 : τ

T-FIX

Γ; Σ B e : τ
U−→ τ

Γ; Σ B fix e : τ

T-NEW
Γ; Σ B e : τ

Γ; Σ B new e : aref τ

T-SWAP
Γ; Σ1 B e1 : aref τ1 Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B swap e1 e2 : aref τ2 × τ1

T-DELETE
Γ; Σ B e : aref τ

Γ; Σ B delete e : 1

Figure 9. Statics (iv): terms

Σ1 B s : Σ2 (store typing)

S-NIL

Σ1 B {} : ·

S-CONS
Σ11 B s : Σ2 ·; Σ12 B v : τ

Σ11,Σ12 B s ] {` 7→ v} : Σ2, `:τ

B s; e : τ (configuration typing)

CONF
Σ1 B s : Σ1,Σ2 ·; Σ2 B e : τ

B s; e : τ

Figure 10. Statics (v): stores and configurations

Alms does just that. In §5 we show that our implicit promotion
mechanism selects the best usage qualifier for function types.

Store and configuration judgments. In order to prove our type
soundness theorem, we need to lift our typing judgments to stores
and run-time configurations.

The type of a store is a typing context containing the names
of the store’s locations and the types of their contents. The store
typing judgment Σ1 B s : Σ2 gives store s type Σ2 in the context
of Σ1, which is necessary because values in the store may refer to
other values in the store. Rule S-CONS shows that the resources
represented by context Σ1 (i.e., Σ11,Σ12) are split between the
values in s.

Our preservation lemma concerns typing judgments on configu-
rations,B s; e : τ , which means that e has type τ in the context of
store s. To type the configuration by rule CONF, we type the store,
splitting its type into Σ1, which contains locations referenced from
the store, and Σ2, which contains locations referenced from e.

5. Theoretical Results
We now state our two main theorems—principal qualifiers and type
soundness—and sketch their proofs. Full versions of our proofs
may be found in an extended version of this paper available at
www.ccs.neu.edu/~tov/pubs/alms.

Principal qualifiers. Alms and aλms go to a lot of trouble to
find the best usage qualifier expressions for function types. To
make programming with affine types as convenient as possible, we
want to maximize polymorphism between one-use and unlimited
versions of functions. While writing the Alms standard library, we
found that usage qualifier constants A and U, even with dereliction
subtyping, were insufficient to give a principal type to some terms.

For example, consider function default, an eliminator for option
types, sans function argument types:

let default (def: . . .) (opt: . . .) =
match opt with
| Some x → x
| None → def

Without usage qualifier expressions, default has at least two incom-
parable types:

default1 :

A

α̂. α̂ U−→ α̂ option A−→ α̂
default2 :

A

α.α U−→ α option U−→ α.

In the first case, because α̂ might be affine, the partial application
of default1 must be a one-use function, but in the second case
we know that α is unlimited so partially applying default2 and
reusing the result is safe. Formally, these types are incomparable
because the universally-quantified type variable α̂ in the former
has a different kind than α in the latter, and Alms uses the kernel
variant of rule TSUB-ALL. However, even were we to replace

http://www.ccs.neu.edu/~tov/pubs/alms


rule TSUB-ALL with a rule analogous to Fω<:’s full variant,

Γ, α:κ ` τ1 <:v τ2 Γ, α:κ ` κ1 <:−v κ2

Γ ` ∀α:κ1. τ1 <:v ∀α:κ2. τ2
TSUB-ALLFULL ,

the types would not be related by the subtyping order. More impor-
tantly, neither type is preferable in an informal sense. The type of
default1 allows α̂ to be instantiated to an affine or unlimited type,
but the result of partially applying it is a one-use function even if α̂
is known to be unlimited:

default1 5 : int option A−→ int
default1 (aref 5) : int aref option A−→ int aref.

If we choose default2, the result of partial application is unlimited,
but attempting to instantiate α to an affine type is a type error:

default2 5 : int option U−→ int
default2 (aref 5) : Type error!

Alms avoids both problems and instead discovers that the best
usage qualifier for the arrow is the kind of the type variable:

default :

A

α̂. α̂ U−→ α̂ option 〈α̂〉−−→ α̂

default 5 : int option U−→ int
default (aref 5) : int aref option A−→ int aref.

Because this is an important property, we prove a theorem that
every typeable aλms function has a principal usage qualifier.

Theorem 3 (Principal qualifiers). If Γ; Σ B λx:τ.e : τ1
ϕ−→ τ2,

then it has a least qualifier expression ϕ0; that is,

• Γ; Σ B λx:τ.e : τ1
ϕ0−−→ τ2 and

• Γ ` ϕ0 <: ϕ′ for all ϕ′ such that Γ; Σ B λx:τ.e : τ1
ϕ′
−→ τ2.

Proof sketch. We obtain the principal qualifier ϕ0 as follows. Let
Σ0 be the restriction of Σ to exactly the free variables and locations
of λx:τ.e. Let ϕ0 be the unique bound of Σ0 given by Γ ` Σ0 �
ϕ0. By strengthening, Γ; Σ0 B λx:τ.e : τ1

ϕ0−−→ τ2, and by
rule T-WEAK we can get the same type in Σ.

A derivation of Γ; Σ B λx:τ.e : τ1
ϕ′
−→ τ2 always involves

rule T-ABS using some portion of Σ, followed by some number of
subsumptions and weakenings. Subsumption will never let ϕ′ be
less than ϕ0. However, weakening might allow us to type λx:τ.e
with a different portion of Σ than Σ0. We know that any superset
of Σ0 has bound no less than ϕ0, and while a non-superset of Σ0

may have a smaller bound, we chose Σ0 so that only Σ0 and its
supersets are suitable to type the term and then weaken to Σ.

Thus, for a function in any given context, there is a least usage
qualifier, and our implementation can find the least qualifier by
considering only the portion of Σ that pertains to the free identifiers
of the λ term, as suggested by the algorithmic rule

(T-ABSALG )
` (Γ; Σ), x:τ1 Γ′; Σ′ Γ′; Σ′ B e : τ2

ϕ0 =

{
A if locs(e) 6= ∅⊔
{ϕ | x ∈ fv(e),Γ ` Σ(x) : ϕ} otherwise

Γ; Σ B λx:τ1.e : τ1
ϕ0−−→ τ2

.

Type soundness. The key obstacle in our type soundness proof is
establishing a substitution lemma, which in turn relies on showing
that the kind of the type of any value accurately reflects the re-
sources contained in that value, which itself comes as a corollary to
the proposition that the kinds of subtypes are themselves subkinds:

Lemma 4 (Monotonicity of kinding). If Γ ` τ1 <:+ τ2 where
Γ ` τ1 : ϕ1 and Γ ` τ2 : ϕ2, then Γ ` ϕ1 <: ϕ2.

This lemma is the reason for the premise in rule OK-ARR that
for a kind Παv.κ, variance v must be at least + if α ∈ ftv(κ).
Otherwise, we could construct a counterexample to lemma 4:

• β:Πα−.〈α〉 ` β (1
A−→ 1) <:+ (1

U−→ 1),

• β:Πα−.〈α〉 ` β (1
A−→ 1) : A, and

• β:Πα−.〈α〉 ` β (1
U−→ 1) : U,

• but β:Πα−.〈α〉 ` A <: U is not the case.

The kind well-formedness judgment rules out kinds like Πα−.〈α〉.

Proof for lemma 4. We define an extension of the subkinding rela-
tion, Γ ` κ1 / κ2, which is insensitive to the variances decorating
Π kinds. Observe that on qualifier expressions this new relation co-
incides with subkinding. We generalize the induction hypothesis—
if Γ ` τ1 <:+ τ2 where Γ ` τ1 : κ1 and Γ ` τ2 : κ2, then
Γ ` κ1 / κ2—and complete the proof by induction on the struc-
ture of the subtyping derivation.

Corollary 5 (Kinding finds locations). Suppose that Γ; Σ B v : τ
and Γ ` τ : ϕ where dom(Σ) contains only locations (`). If any
locations appear in v then Γ ` A <: ϕ.

Proof sketch. By induction on the typing derivation. We use the
previous lemma in the case for the subsumption rule T-SUBSUME:

Case
Γ; Σ B v : τ ′ Γ ` τ ′ <:+ τ Γ ` τ : ϕ

Γ; Σ B v : τ
.

By the induction hypothesis, Γ ` τ ′ : A, and by lemma 4,
Γ ` A <: ϕ.

Corollary 5 lets us prove our substitution lemma. Then progress,
preservation, and type soundness are standard:
Theorem 6 (Type soundness). IfB {}; e : τ then either e diverges
or there exists some store s and value v such that {}; e ∗7−→ s; v
andB s; v : τ .

6. Related Work
In prior work, we showed how an Alms-like affine language may
safely interoperate with a conventional (non-affine) language (Tov
and Pucella 2010). In particular, the languages may freely share val-
ues, including functions. Attempts by the conventional language to
subvert the affine language’s invariants are prevented by dynamic
checks in the form of behavioral software contracts. That paper fo-
cused specifically on multi-language interaction, using a predeces-
sor of Alms.

System F◦. Mazurak et al. (2010) describe a calculus of “light-
weight linear types.” Their primary motivation is similar to ours:
to remove needless overhead and provide a “simple foundation for
practical linear programming.”

System F◦ and the prior iteration of Alms independently intro-
duced several new ideas:

• Both use kinds to distinguish linear (in Alms, affine) types from
unlimited types, where F◦’s kinds ◦ and ? correspond to our A
and U, and their subkinding relation ? ≤ ◦ corresponds to our
U v A.
• F◦ uses existentials and subkinding to abstract unlimited types

into linear types. Alms (the language) uses modules and aλms

(the calculus) uses higher-kinded type abstraction to define ab-
stract affine types, including type constructors with parameters.



Mazurak et al. mention the possibility of extending F◦ with ab-
straction over higher kinds but do not show the details.
• They sketch out a convenient notation for writing linear com-

putations. This inspired our different implicit threading syntax,
which is implemented in Alms as mentioned at the end of §2.

There are also notable differences:

• F◦ has linear types, which disallow weakening, whereas Alms
has affine types, which support it. This is a trade-off. Linear
types make it possible to enforce liveness properties, which may
be useful, for instance, to ensure that manual memory manage-
ment does not leak. On the other hand, we anticipate that safely
combining linearity with exceptions requires a type-and-effect
system to track when raising an exception would implicitly dis-
card linear values. Alms can support explicit deallocation so
long as failure to do so is backed up by a garbage collector.
• Alms’s unlimited-use function type is a subtype of its one-use

function type. F◦ does not provide subtyping, though they do
show how η expansion can explicitly perform the coercion that
our subtyping does implicitly. Experience with our implemen-
tation confirms that dereliction subtyping is valuable, though
we admit it comes at the cost of complexity.
• F◦ requires annotating abstractions (λκx:τ.e) to specify the

kind of the resulting arrow type, which may only be ? or ◦.
Alms refines this with qualifier expressions and selects the least
kind automatically.
• Mazurak et al. give a resource-aware semantics and prove that

they can encode regular protocols. We do neither but conjecture
that our system enjoys similar properties, except that weakening
makes it possible to bail out of a protocol at any point.
• Their sketch of rules for algebraic datatypes is similar to how

ours work, though ours are strictly stronger. For example, an
option type in F◦ would have two versions:

optionLin : ◦ ⇒ ◦ optionUn : ?⇒ ?.

Our dependent kinds in Alms let us define one type constructor
whose kind subsumes both:

option : Πα̂+. 〈α̂〉.

Clean. At first glance, Clean’s uniqueness types appear to be
dual to affine types. Uniqueness types are descriptive—they indi-
cate that a particular reference is unique—while affine (and linear)
types are prescriptive, since they restrict what may be done to some
reference in the future but do not necessarily know where it’s been.
Similarly, Clean’s subtyping relation, which allows forgetting that
a value is unique, appears dual to Alms’s, which allows pretending
that an unlimited value is affine. However, the duality breaks down
in the higher-order case. When a partially applied function cap-
tures some unique free variable, Clean’s type system must prohibit
aliasing of the function in order to maintain descriptive uniqueness
when the function is fully applied (Plasmeijer and Eekelen 2002).
In Clean’s terminology, function types with the unique attribute are
“essentially unique,” but we might call them “affine.”

There is a strong similarity between our kinding judgment and
Clean’s uniqueness propagation rules that relate the uniqueness of
data structures to that of their constituent parts. While Clean sup-
ports subtyping, it does not have a subkinding relation analogous to
Alms or F◦’s. In particular, Clean requires that the uniqueness at-
tributes declared for an abstract type in a module’s interface exactly
match the uniqueness attributes in the module’s implementation.

Use types and qualifiers. Wadler (1991) discusses several vari-
ants of linear type systems. He proposes something akin to derelic-
tion subtyping (i.e., !A ≤ A) and points out that in such a system,

terms such as λf.λx.f x have several unrelated types. (We made
a similar observation in §5.) In order to recover principal types, he
introduces use types, which decorate the exponential modality with
a use variable i: !i. The use variable ranges over 0 and 1, where
!0A = A and !1A = !A. This provides principal types, but at the
cost of adding use-variable inequality constraints to type schemes.

A use-variable inequality of the form i ≤ j is essentially an
implication i ⊃ j, where 1 is truth and 0 is falsity. De Vries
et al. (2008) show, in the setting of uniqueness types, how such
inequalities may be represented instead using Boolean logic. For
example, if we have a type

. . . !i . . . !j . . . , [i ≤ j],
we can discard the inequality constraint and represent it instead as

. . . !i . . . !i∨k . . . ,

because i ≤ (i ∨ k). In general, any collection of use-variable
inequalities (or uniqueness-attribute constraints) may be eliminated
by replacing some of the use variables with propositional formulae
over use variables. This insight is the source of Alms’s usage
qualifier expressions.

If we follow use types to their logical conclusion, we reach
λURAL (Ahmed et al. 2005), wherein each type is composed of a
pretype that describes its representation and a qualifier that gives
its usage. Alms does not follow this approach because we insist
that qualified types are too verbose for a user-visible type system.
Their system’s qualifier lattice includes two more than ours, R for
relevant types that allow duplication but not discarding, and L for
linear types. This results in a rich and elegant system, but we do not
believe R and L would be useful in a language like Alms.

However, there is an interesting correspondence between our
kinding rules and their type rules. For example, our product type
constructor (×) has kind Πα+.Πβ+.〈α〉 t 〈β〉, which means that
the kind of a product type is the least upper bound of the kinds of
its components. The product typing rule in λURAL enforces a similar
constraint, that the qualifier of a product type, ξ, must upper bound
the qualifiers of its components τ1 and τ2.

∆ ` Γ Γ1 � Γ2 ∆ ` ξ : QUAL
∆; Γ1 ` v1 : τ1 ∆ ` τ1 � ξ
∆; Γ2 ` v2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` 〈v1, v2〉 : ξ(τ1 ⊗ τ2)
(MPAIR).

Vault. DeLine and Fähndrich’s Vault (2001) is a safe, low-level
language with support for typestate. It tracks keys, which associate
static capabilities with the identity of run-time objects, in the same
manner that Alms uses existentially-quantified type variables to tie
values to capabilities. This allows static enforcement of a variety
of protocols. As an example, DeLine and Fähndrich give a tracked
version of the Berkeley Sockets API. In previous work on Alms we
show how Alms expresses the same interface.

Vault’s treatment of capabilities may be more convenient to use
than Alms’s, because while Alms requires explicit threading of ca-
pability values, Vault’s key sets are tracked automatically within
function bodies. On the other hand, because capabilities in Alms
appear as ordinary values, we may combine them using the na-
tive intuitionistic logic of Alms’s type system. Instead, Vault must
provide a simple predicate calculus for expressing pre- and post-
conditions. For more complicated logic, Vault allows embedding
capabilities in values, but since the values are untracked, extracting
a capability from a value requires a dynamic check. Alms’s type
system eliminates the need for such checks for affine values stored
in algebraic datatypes, though it also allows dynamic management
of affine values by storing them in reference cells.

Notably, Alms can also express Fähndrich and DeLine’s adop-
tion and focus (2002).



Sing#. Microsoft’s experimental Singularity operating system is
written in Sing#, a high-level systems programming language that
extends Spec# (Fähndrich et al. 2006). Sing# has built-in support
for channel contracts, which are a form of session type providing
static checking of communication protocols between device drivers
and other services. Unlike more idealistic linear systems, the design
acknowledges the need to allow for failure: every protocol implic-
itly includes branches to close the channel at any point.

Sing# processes do not share memory but can allocate tracked
objects on a common exchange heap. Only one process has access
to an exchange heap object at a given time, but a process may give
up access and transmit the object over a channel to another process,
which then claims ownership of it.

Alms’s library includes two different implementations of ses-
sion types supporting different interfaces, and the exchange heap
concept is easily expressible as well.

7. Future Work and Conclusion
We already enjoy programming in Alms, but we are not done yet.

Unit subsumption. In §2, we found that adding capabilities to
an existing interface often involves wrapping the old version of a
function to ignore a new argument of type unit or construct a tuple
containing unit for its result. This is unnecessary. While the client
outside the abstraction barrier needs to see types that involve the
affine capabilities, the implementation has no use for them.

To eliminate much of this noise, we can extend our subtyping
relation to take advantage of the fact that unit is, well, a unit:

Γ ` τ2 singleton
Γ ` τ1 <:v τ1 × τ2

Γ ` τ2 singleton
Γ ` τ1 <:v τ2 × τ1

Γ ` τ2 singleton

Γ ` τ1
ϕ−→ τ2

ϕ−→ τ3 <:v τ1
ϕ−→ τ3

This is implementable via a type erasure technique such as inten-
sional polymorphism (Crary et al. 2002). Not representing compile-
time capabilities at run time has performance benefits as well.

Type inference. Alms’s local type inference eliminates most ex-
plicit type applications, but needing to annotate all function argu-
ments is irksome. To fix this, we are exploring possibilities for
type inference. While we suspect that our limited subtyping should
not impede full Damas-Milner–style inference (Damas and Milner
1982), Alms has several idioms that rely on existential types. We
are exploring whether an extension for first-class polymorphism,
such as HML (Leijen 2009), would be suitable for Alms.

Alms is not finished, but our prototype is at this point usable for
experimentation. It is based on a calculus, aλms , whose type sys-
tem we have proved sound. While some parts of the type system
are complex, we have seen in practice that Alms types are tractable
and Alms programs do not look very different from the functional
programs to which we are accustomed. It currently implements al-
gebraic datatypes, exceptions, pattern matching, concurrency, and
opaque signature ascription. The language is rich enough to express
Vault-style typestate, a variety of static and dynamic locking pro-
tocols, checked downcasts of one-use functions to unlimited-use
functions, session types, and more.
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