Shmencode
Caml-Shcaml by Example

Alec Heller Jesse A. Tov

College of Computer and Information Science
Northeastern University

ML Workshop
21 September 2008

Shell programming terrifies me. There is
something about writing a simple shell
script that is just much, much more
unpleasant than writing a simple C
program, or a simple COMMON LISP
program, or a simple Mips assembler
program.

—Olin Shivers, "A Scheme Shell”

A Confession

Sometimes | like Perl.

Perl? How Could You?

Perl gets things done.
» Easy access to system facilities
» Better abstractions than shell

OCaml?

What about OCaml?
» Better abstractions than Perl
» Dealing with Unix is a pain

Introducing Shcaml

What about OCaml? With Shcaml:
» Better abstractions than Perl
» Dealing with Unix is sonewhat easier

Related Work

» Other work combining functional programming and
the shell:

» Scsh (Shivers 1994)
» Cash (Verlyck 2002)

» Other work adding fancy metadata to shell pipelines:
» Microsoft’s Power Shell (Snover 2002)

8 Our Task

I would like to convert my CD collection to MP3.

Our Task

I would like to convert my CD collection to MP3.

wayv .mp3
) uncompressed compressed

€D audio cdparanoia audio lame audio

Requirements

Two additional requirements:
» Parallelize ripping and encoding
» Have this working before lunch

B Requirements
—

Two additional requirements:
» Parallelize ripping and encoding
» Have this working before lunch

Extracting Track Data

The program cdparanoia can print out track sizes and
offsets.

command "cdparanoia -Q 2>81";;

113

Extracting Track Data

The program cdparanoia can print out track sizes and
offsets.

command "cdparanoia -Q 2>&1";;
- : ('_a elem -> text) fitting = <abstr>
#

113

v Extracting Track Data
The program cdparanoia can print out track sizes and

offsets.
run (command "cdparanoia -Q 2>&1");;

10 113

Extracting Track Data

The program cdparanoia can print out track sizes and
offsets.

run (command "cdparanoia -Q 2>&1");;
cdparanoia III release 9.8 (March 23, 2001)

track_num 1 start sector 0 msf: 0,2,0
track_num 2 start sector 17868 msf: 4,0,18
track_num = 3 start sector 32216 msf: 7,11,41

Table of contents (audio tracks only):

track length begin copy pre ch
1. 17868 [03:58.18] 0 [00:00.00] no no 2
2. 14348 [03:11.23] 17868 [03:58.18] no no 2
3. 13799 [03:03.74] 32216 [07:09.41] no no 2

TOTAL 46015 [10:18.15] (audio only)
- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0
#

113

Extracting Track Data

The program cdparanoia can print out track sizes and
offsets.

run (command "cdparanoia -Q 2>&1");;
cdparanoia III release 9.8 (March 23, 2001)

track_num 1 start sector 0 msf: 0,2,0
track_num 2 start sector 17868 msf: 4,0,18
track_num = 3 start sector 32216 msf: 7,11,41

Table of contents (audio tracks only):

track length begin copy pre ch
1. 17868 [03:58.18] 0 [00:00.00] no no 2
2. 14348 [03:11.23] 17868 [03:58.18] no no 2
3. 13799 [03:03.74] 32216 [07:09.41] no no 2

TOTAL 46015 [10:18.15] (audio only)
- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0
#

113

. Extracting Track Data

The program cdparanoia can print out track sizes and
offsets.

run begin
command "cdparanoia -Q 2>&1"
-] grep_string (starts_with " "))
end;;

113

Extracting Track Data

The program cdparanoia can print out track sizes and
offsefts.
run begin

command "cdparanoia -Q 2>&1"

-] grep_string (starts_with " "))

end;;

1. 17868 [03:58.18] 0 [00:00.00] no
2. 14348 [03:11.23] 17868 [03:58.18] no
3. 13799 [03:03.74] 32216 [07:09.41] no

- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0

no
no
no

N

113

/¥ Interlude: What's the Deal with Fittings?

Fittings are meant to evoke shell pipelines:

cdparanoia -Q 2>&1 \
| grep '~ '

113

9

F

. Interlude: What's the Deal with Fittings?

Fittings are meant to evoke shell pipelines:
cdparanoia -Q 2>&1 \ command "cdparanoia -Q 2>&1"

| grep '~ ' -| grep_string (starts_with "

")

113

Inferlude: What's the Deal with Fittings?

Fittings are meant to evoke shell pipelines:
cdparanoia -Q 2>&1 \ command "cdparanoia -Q 2>&1"

| grep '~ ' -| grep_string (starts_with " "

Buft:
» Fittings have types
» Fittings carry “hidden” metadata
» Fittings are first-class

113

') Fittings Have Types

An (a— B) fitting is a pipeline component
that consumes as and produces js.

113

B2 Fittings Have Types

An (a— B) fitting is a pipeline component
that consumes as and produces js.

We compose them with the pipe:

val (-]) : (o« — p) fitting
— (B —) fitting
— (a —) fitting

Ml Fittings Have Types

An (a— B) fitting is a pipeline component
that consumes as and produces js.

We compose them with the pipe:

val (-]) : (o« — p) fitting
— (B —) fitting
— (a —) fitting

are made out of

and transmit

Shell pipelines

Unix processes

untyped bytes.

Shcaml pipelines

Shcaml fittings

OCaml values.

113

CAKE

g Fittings Carry Metadata

val CdParanoia.fitting

punit —
(<Line| delim: absent; .. as a > —
<Line| delim: present; .. as a >) fitting

CdParanoia.fitting () is a fitting adaptor.

E Fittings Carry Metadata

val CdParanoia.fitting

punit —
(<Line| delim: absent; .. as a > —
<Line| delim: present; .. as a >) fitting

CdParanoia.fitting () is a fitting adaptor.
» It does not change the "main” field of record

» It splits records into fields, which are then accessible
by name:

val Line.Delim.get_int
: string — <Line| delim: present; .. > — int

'4“0(;:

Fittings Are First-Class

Evaluating a fitting does not “run” the fitting.

For that, we need fitting runners:

val run : (text — 'o0 elem) fitting — Proc.status

3 Fittings Are First-Class

Evaluating a fitting does not “run” the fitting.

For that, we need fitting runners:

val run : (text — 'o0 elem) fitting — Proc.status
val run_bg : (text — 'o0 elem) fitting — Proc.t

Fittings Are First-Class

Evaluating a fitting does not “run” the fitting.

For that, we need fitting runners:

val run : (text — 'o0 elem) fitting — Proc.status
val run_bg : (text — 'o0 elem) fitting — Proc.t
val run_list : (text — ’'o) fitting — ‘o list

113

i1 Fittings Are First-Class

Evaluating a fitting does not “run” the fitting.

For that, we need fitting runners:

val run : (text — 'o0 elem) fitting — Proc.status
val run_bg : (text — 'o0 elem) fitting — Proc.t
val run_list : (text — ’'o) fitting — ‘o list
val run_out : ?procref:(Proc.t option ref)

— (text — 'o elem) — out_channel
val run_in : ?procref:(Proc.t option ref)

— (text — 'o elem) — in_channel

Y Fittings Are First-Class

Evaluating a fitting does not “run” the fitting.

For that, we need fitting runners:

val
val
val
val

val

run
run_bg

run_list :
: ?procref:(Proc.t option ref)

run_out

run_in

(text — 'o elem) fitting — Proc.status
(text — 'o elem) fitting — Proc.t
(text — 'o0) fitting — 'o list

— (text — 'o elem) — out_channel

: ?procref:(Proc.t option ref)

— (text — 'o elem) — in_channel

Now back to work . . .

113

B cetting the Disc Id

We can write a function that produces the tfrack data as
a list:

let get_track_data () = run_list begin
command "cdparanoia -Q 2>&1"
-| grep_string (starts_with " ")
-| CdParanoia.fitting ()
-| sed (fun line — (Line.Delim.get_int "length" line,
Line.Delim.get_int "begin" line))
end

106

| Cetting the Disc Id

We can write a function that produces the tfrack data as
a list:

let get track data () = run_list begin
command "cdparanoia -Q 2>&1"
-| grep_string (starts_with " ")
-| CdParanoia.fitting ()
-| sed (fun line — (Line.Delim.get_int "length" line,
Line.Delim.get_int "begin" line))
end

To get the disc id, we pass the track lengths and offsets to
the hash function:

let get _discid () = CddbID.discid (get_track_data ())

16 1056

Filling in the Gaps

How are CdParanoia and CddbId defined?

module CdParanoia = Delim.Make_names(struct
let options = { Delimited.default_options with
Delimited.field_sep = ' ' }
let names = ["track"; "length"; "length-msh";
"begin"; "begin-msh"; "copy";
“pre"; "ch"]
end)

CdParanoia is an adaptor module; we provide a variety of
adaptors for different file formats.

98

Filling in the Gaps

How are CdParanoia and CddbId defined?

module CddbID : sig
val discid : (int % int) list — string

end = struct
open Int32
open List
let ((+), (%), (/), (<<<), (1) =
(add, rem, div, shift_left, logor)
let ten = of_int 10
let fps = of_int 75

let sum_digits =

let rec loop acc n = if n = zero then acc else loop (acc + n % ten) (n / ten) in
loop zero

let discid track list =

end

let lengths = map (fun (x,_) — of_int x) track list in
let offsets = map (fun (_,y) — of_int y) track list in
let ntracks = of_int (length lengths) in
let n = fold_left (fun x y — x + sum_digits (y / fps + of_int 2)) zero offsets in
let t fold_left (+) zero lengths / fps in
let id = (n % of_int Oxff <<< 24) ||| (t <<< 8) ||| ntracks in
sprintf "%081x" id

72

Next Stop CDDB

Now we need to query CDDB with the disc id.

Function cddb_request takes the id and returns the URL for
our query:

let cddb_request discid =
"http://freedb.freedb.org/~cddb/cddb.cgi" ~
"?cmd=cddb+read+rock+" ~ discid ~ "&hello=" ~
backquote "whoami" ~ "+" ~ backquote "hostname" *
"+shmendcode+0.1b&proto=6"

Next Stop CDDB

Now we need to query CDDB with the disc id.

Function cddb_request takes the id and returns the URL for
our query:

let cddb_request discid =
"http://freedb.freedb.org/~cddb/cddb.cgi" ~
"?cmd=cddb+read+rock+" ~ discid ~ "&hello=" ~
backquote "whoami" ~ "+" ~ backquote "hostname" *
"+shmendcode+0.1b&proto=6"

Function curl constructs a fitting that retrieves a URL:
let curl url = program "curl" ["-s"; url]

Let's give it atry....

66

CDDB Query Results

run begin

curl (cddb_request (get_discid ()))
end;;

66

&7

BB CDDB Query Resllts

A

run begin
curl (cddb_request (get_discid ()))

end;;
210 rock e882a039 CD database entry follows (until terminating ‘.’)
xmcd
#
Track frame offsets:
150
81375
#
Disc length: 2280 seconds
#
DISCID=e882a039
DTITLE=Miles Davis / In a Silent Way
DYEAR=1969
DGENRE=Jazz
TTITLE®@=Shhh/Peaceful
TTITLE1=In a Silent Way/It’s About That Time
EXTD=

- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0

CDDB Query Results

run begin
curl (cddb_request (get_discid ()))

end;;
210 rock e882a039 CD database entry follows (until terminating ‘.’)
xmcd
#
Track frame offsets:
150
81375
#
Disc length: 2280 seconds
#
DISCID=e882a039
DTITLE=Miles Davis / In a Silent Way
DYEAR=1969
DGENRE=Jazz
TTITLE®@=Shhh/Peaceful
TTITLE1l=In a Silent Way/It’s About That Time
EXTD=

- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0

CDDB Query Resullts

run begin
curl (cddb_request (get_discid ()))

-] Key_value.fitting ()
end;;

66

CDDB Query Results

run begin
curl (cddb_request (get_discid ()))
-] Key_value.fitting ()
end;;
examples/shmencode.ml: shtream warning: Key_value.splitter: key_value
line has 1 fields, needs 2
DISCID=e882a039
DTITLE=Miles Davis / In a Silent Way
DYEAR=1969
DGENRE=Jazz
TTITLE®@=Shhh/Peaceful
TTITLEl=In a Silent Way/It’s About That Time
EXTD=
examples/shmencode.ml: shtream warning: Key_value.splitter: key_value
line has 1 fields, needs 2
- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0

66

CDDB Query Results

e

run begin
curl (cddb_request (get_discid ()))
-| Key_value.fitting ~quiet:true ()

end;;

DISCID=e882a039

DTITLE=Miles Davis / In a Silent Way

DYEAR=1969

DGENRE=Jazz

TTITLE®O=Shhh/Peaceful

TTITLEl=In a Silent Way/It’s About That Time

EXTD=

- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0

19 "

20

CDDB Query Results

run begin
curl (cddb_request (get_discid ()))
-| Key_value.fitting ~quiet:true ()

-| sed (Line.select Line.Key_value.value)
end;;

66

20

CDDB Query Results

run begin
curl (cddb_request (get_discid ()))
-] Key_value.fitting ~quiet:true ()
-| sed (Line.select Line.Key_value.value)

end; ;

€882a039

Miles Davis / In a Silent Way

1969

Jazz

Shhh/Peaceful

In a Silent Way/It’s About That Time

- : Shcaml.Proc.status = Shcaml.Proc.WEXITED 0

66

% Parsing CDDB Results (1)

The Key_value adaptor gets us key-value pairs. We need:
» Whole album metadata: arfist, title, year, genre

» Per-frack metadata: track number and title

21 66

21

Parsing CDDB Results (1)

The Key_value adaptor gets us key-value pairs. We need:
» Whole album metadata: arfist, title, year, genre
A string list of command-line flags

» Per-frack metadata: track number and title

66

/| Parsing CDDB Results (1)

The Key_value adaptor gets us key-value pairs. We need:
» Whole album metadata: arfist, title, year, genre
A string list of command-line flags

» Per-frack metadata: track number and title

type track = {
index: int;
title: string;
wav: string;
mp3: string;

}

21 60

Kk

21

Parsing CDDB Results (1)

The Key_value adaptor gets us key-value pairs. We need:

» Whole album metadata: arfist, fitle, year, genre
A string list of command-line flags

» Per-track metadata: frack number and fitle

type track = {
index: int;
title: string;
wav: string;
mp3: string;

}

We fold over the stream of key-value pairs to build these.
let parse_cddb_line = (22 lines)

38

I Parsing CDDB Results (2)

A function that queries CDDB and returns the parsed result:

let get_cddb discid =
let (tracks, album_tags) =
Shtream. fold_left parse_cddb_line ([], [1)
(run_source begin
curl (cddb_request discid)
-| Key_value.fitting ~quiet:true ()
end) in
(List.rev tracks, album_tags)

22

30

Parsing CDDB Results (2)

A function that queries CDDB and returns the parsed result:

let get_cddb discid =
let (tracks, album_tags) =
Shtream. fold_left parse_cddb_line ([], [1)
(run_source begin
curl (cddb_request discid)
-| Key_value.fitting ~quiet:true ()
end) in
(List.rev tracks, album_tags)

get_cddb (get_discid ());;

22

30

Parsing CDDB Resulfs (2)

A function that queries CDDB and returns the parsed result:

let get_cddb discid =
let (tracks, album_tags) =
Shtream. fold_left parse_cddb_line ([], [1)
(run_source begin
curl (cddb_request discid)
-| Key_value.fitting ~quiet:true ()
end) in
(List.rev tracks, album_tags)

get_cddb (get_discid ());;
- ¢ track list x string list =
([{index = 1; title = "Shhh/Peaceful"};
{index = 2;
title = "In a Silent Way/It’'s About That Time"}],
["--tg"; "Jazz"; "--ty"; "1969"; "--ta";
"Miles Davis"; "--tl"; "In a Silent Way"])

22

30

23

Let “Er Rip (and Encode)

How should we call the ripping and encoding programs?
We'll make fittings:

30

Let ‘Er Rip (and Encode)

How should we call the ripping and encoding programs?
We'll make fittings:

let rip track =

program "cdparanoia"
["--"; string_of_int track.index; track.wav]

23

27

B Lot Er Rip (and Encode)

How should we call the ripping and encoding programs?
We'll make fittings:

let rip track =
program "cdparanoia"
["--"; string_of_int track.index; track.wav]
/>/ [2 %>*x ‘Null; 1 %>& 2]

23

26

gﬁﬁ?

23

Let “Er Rip (and Encode)

How should we call the ripping and encoding programs?
We'll make fittings:

let rip track =
program "cdparanoia"
["--"; string_of_int track.index; track.wav]
/>/ [2 %>*x ‘Null; 1 %>& 2]

let encode album_tags track =
program "lame"
(album_tags @
["--tn"; string_of_int track.index;
"--tt"; track.title; "--quiet";
track.wav; track.mp3])

CAKE

HE

23

Let “Er Rip (and Encode)

How should we call the ripping and encoding programs?
We'll make fittings:

let rip track =
program "cdparanoia"
["--"; string_of_int track.index; track.wav]
/>/ [2 %>*x ‘Null; 1 %>& 2]

let encode album_tags track =
program "lame"
(album_tags @

["--tn"; string_of_int track.index;
"--tt"; track.title; "--quiet";
track.wav; track.mp3])

& program "rm" [track.wav]

Ripping. Then Encoding

At this point, we can rip a CD sequentially:

24

24

3 " Ripping, Then Encoding

At this point, we can rip a CD sequentially:
1. Compute the disc id

let discid = get_discid ()

in

A~ Ripping, Then Encoding

At this point, we can rip a CD sequentially:
1. Compute the disc id
2. Query CDDB and parse the response

let discid
let (tracks, album)

get_discid () in
get_cddb discid in

24

Ripping, Then Encoding

At this point, we can rip a CD sequentially:

1. Compute the disc id
2. Query CDDB and parse the response
3. Rip each track

let discid
let (tracks, album)
let rip_fittings

get_discid ()
get_cddb discid
List.map rip tracks

24

in
in
in

B Ripping, Then Encoding

At this point, we can rip a CD sequentially:

1. Compute the disc id
2. Query CDDB and parse the response
3. Rip each track
4. Encode each track
let discid
let (tracks, album)

let rip_fittings
let encode_fittings

get_discid ()
get_cddb discid
List.map rip tracks

24

in
in
in

List.map (encode album) tracks in

=

TS

H 1

Ripping, Then Encoding

At this point, we can rip a CD sequentially:
1. Compute the disc id
2. Query CDDB and parse the response
3. Rip each track
4. Encode each track

let discid = get_discid () in
let (tracks, album) = get_cddb discid in
let rip_fittings = List.map rip tracks in

let encode_fittings List.map (encode album) tracks in
run ~>>(rip_fittings @ encode_fittings)

We’d like our program to take advantage a mulficore
machine.

24

25

» We must rip each track
before encoding it

¥ Parallelization Constraints

1.wav 2.wav 3.wav
1.mp3 2.mp3 3.mp3

Parallelization Constraints

25

» We must rip each track
before encoding it

» We can rip at most
one track at once

1.wav

v

1.mp3

2.wav

v

2.mp3

3.wav

3.mp3

» We must rip each track
before encoding it

» We can rip at most
one track at once

» Prefer ripping over
encoding

25

Parallelization Constraints

—@

1.wav

1.mp3

Yo 4 o

2.wav

2.mp3

3.wav

3.mp3

Building the Dependency DAG

let build_dag (tracks, album)
let each (mp3s, prev) track =

let wav = DepDAG.make ~prio:1 {]
printf "Ripping %s\n%!" track.wav;
run_bg (rip track)

|} prev in

let mp3 = DepDAG.make ~prio:2 {|
printf "Encoding %s\n%!" track.mp3;
run_bg (encode album track)

|} [wav] in
(mp3::mp3s, [wav]) in
let mp3s, _ = List.fold_left each ([1, []1) tracks in

DepDAG.make_par mp3s

26

BB rutting It All Together

let main () =
let opts Flags.go "-N <max-procs:int>" in

let n opts#int ~default:2 "-N" in

let discinfo = get_cddb (get_discid ()) in

DepDAG.run ~n (build_dag discinfo)

27

Thank You

Contact us or try Shcaml:
» tov@ccs.neu.edu
» http://www.ccs.neu.edu/~tov/shcaml/

28

tov@ccs.neu.edu
http://www.ccs.neu.edu/~tov/shcaml/

	Introductory Remarks
	Using CDDB
	Computing the Disc ID
	Querying CDDB

	Ripping and Encoding
	Everything Sequential
	Parallelization

	Conclusion

