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Abstract

Substructural logics remove from classical logic rules for reordering, duplica-
tion, or dropping of assumptions. Because propositions in such a logic may no
longer be freely copied or ignored, this suggests understanding propositions
in substructural logics as representing resources rather than truth. For
the programming language designer, substructural logics thus provide a
framework for considering type systems that can track the changing states of
logical and physical resources.

While several substructural type systems have been proposed and im-
plemented, many of these have targeted substructural types at a particular
purpose, rather than offering them as a general facility. The more general
substructural type systems have been theoretical in nature and too unwieldy
for practical use. This dissertation presents the design of a general purpose
language with substructural types, and discusses several language design
problems that had to be solved in order to make substructural types useful in

practice.






So design is a constant challenge to balance comfort with luxe, the

practical with the desirable.

— Donna Karan
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CHAPTER 1

Practical Substructural Types

IN THE LAST two decades, researchers have proposed a myriad of stateful type
systems, in which types reflect and regiment the dynamic states of program
resources. These type systems span a range from minimalistic models (Wadler
1992) to production-quality general-purpose programming languages (Brus
et al. 1987). Many of the more theoretical systems (Wadler 1991; Bierman 1993;
Benton 1995; Barber 1996; Morrisett et al. 2005; Ahmed et al. 2005) are based
explicitly on Girard’s linear logic (1987). Actual implemented programming
languages, however, tend to support less general approaches to statefulness
targeted at specific problems, such as memory regions and typestate for safety
in low-level languages (DeLine and Fiahndrich 2001; Grossman et al. 2002;
Zhu and Xi 2005), session types for static checking of communication protocols
(Fahndrich et al. 2006), or security-oriented types (Swamy et al. 2010).

These special-purpose type systems are often elegant and effective, but they
are of little use to a programmer who wants to write a program using the next
as-yet-uninvented stateful type system. However, many of the specific cases
for statefulness are instances of a more general case: Given a substructural
type system—which limits how many times some values may be used—and
sufficiently flexible abstraction mechanisms, many of the special-purpose type
systems can be expressed within the language. For example, rather than
provide session types as a primitive language feature, session types can be
programmed as a library in a language with substructural types.

If realized successfully, a general-purpose substructural type system can

provide several benefits. First, it eliminates the need to design a new language
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for each new stateful type discipline, and second, it allows for several different
designs for a particular stateful type discipline within the same language.
Together, these properties facilitate experimentation in stateful types. Third,
a general-purpose substructural programming language can support different
notions of stateful types within the same program, which is not possible if each
stateful type system is confined to its own language. However, this flexibility
comes with a trade-off, because a language designed with a particular state
discipline in mind may be tuned specifically for that purpose, potentially
making it easier to use than a general-purpose system. Thus, it is important
to show that programming with a general-purpose substructural type system
is not especially onerous.

This brings me to my thesis:

A programming language with general-purpose substructural

types can be practical and expressive.

By substructural types, I mean type systems that restrict the usual structural
rules of contraction and weakening in order to control the number of times
values may be used, in the style of Girard’s linear logic (1987); in this thesis I
focus mainly on affine types, which can prevent values from being used more
than once. By general-purpose substructural types, I mean a type system in
which substructural types are not devoted to the management of a particular
kind of stateful resource, but available as a general mechanism for building
program abstractions. By practical, I mean that the language offers a full
complement of modern language features suitable for writing a wide range
of programs, and that using the language is not inordinately difficult; by
expressive, I mean that the language can express a variety of stateful resource
disciplines found in the literature.

To support this thesis, I have developed Alms, a general-purpose program-
ming language with affine types. Even the most elementary affine type system
is sufficient to express a variety of stateful type disciplines, but the challenge in
designing a language such as Alms is to make the resulting language practical.
Solving this problem required the introduction of several novel type system

features, such as dereliction subtyping and dependent qualifier kinds, which
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promote reuse by allowing the same abstractions to apply to both affine and
unlimited (non-affine) types. Also in pursuit of pragmatics, I had to come to
grips with the interaction between substructural types and control effects such
as exceptions, and practical concerns led me to consider a mechanism for the
safe interaction between code written in a new, affine language such as Alms
and a similar but conventional (non-affine) language. In each case, I developed
a formal model to validate the soundness of language design ideas motivated

by the pragmatics of substructural types.

1.1 The Structure of This Dissertation

In this dissertation, I introduce the Alms programming language informally,
give a formal model of its semantics, and describe its implementation. I relate
Alms to prior work by others and discuss how the design of Alms is influenced
by that prior work.

In chapter 2, I survey stateful type systems; I show how substructural
types can express a variety of stateful type disciplines, but also highlight the
extent to which the resulting interfaces are awkward. Chapter 3 describes
Alms, a programming language with affine types, and introduces its features
in a series of examples. In chapter 4, I revisit the examples from chapter 2 in
Alms, demonstrating its expressiveness and elegance.

In chapter 5, I describe a model of Alms and prove two propositions, one
about principal types and the other a syntactic type soundness theorem; this
work, along with some of chapter 3, previously appeared the 2011 Symposium
on Principles of Programming Languages (Tov and Pucella 2011b). Addi-
tional proofs for chapter 5 appear in appendix A. Chapter 6 describes the
implementation of Alms, focusing on type inference.

The next two chapters describe and formalize interactions of substructural
types with other language features. Chapter 7, which originally appeared
in the 2010 European Symposium on Programming (Tov and Pucella 2010),
shows how a programming language with affine types can safely interact
with a similar language that lacks affine types. Chapter 8, which originally
appeared in the 2011 Conference on Object-Oriented Programming, Systems,
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Languages and Applications (Tov and Pucella 2011a), explores the relationship
between substructural types and control effects, and proposes a type-and-effect
system to support their safe interaction. Additional proofs for these chapters
appear in appendices B and C, respectively.

In chapter 9, I compare Alms to related work and show how some of that
work influenced the design of Alms. Finally, I propose some future work and

conclude in chapter 10.



CHAPTER 2

Background: Stateful Type Systems

IN A STATEFUL type system, types reflect the dynamic state of resources and
can be used to regulate the usage of such resources. In a weak sense, this is
true of many type systems. For example, in OCaml (Leroy et al. 2011), the type
of a reference cell indicates the type of the value in the corresponding store
location, and the reference acts as a capability to read and write the location
at the proper type. OCaml’s state as reflected in its types is monotonic, in
that the set of operations permitted increases monotonically over time. This
chapter surveys type systems that are stateful in a stronger, non-monotonic
sense: Operations admitted by the type system at one point in a program may
be rejected at a later point.

In §2.1, I begin by introducing intuitionistic linear logic and several
related type systems, which form the basis for much of this chapter. While
these type systems are far from practical, I use them to demonstrate the
expressiveness of substructural types. The subsequent three sections introduce
type systems for managing specific kinds of stateful resources: objects with
simple protocols (§2.2), manually allocated memory (§2.3), and communication
channels with statically checked protocols (§2.4). In each section, I show how
linear logic or one of its variants from §2.1 can be used to express the specific
resource management discipline described in that section. The argument
for expressiveness continues in chapter 4, where I show that these resource

management disciplines are also expressible in Alms.

5
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2.1 Substructural Logics and A Calculi

Substructural logics arise from removing structural rules such as weakening

and contraction from conventional logics:!

IL-WEAKENING IL-CONTRACTION
't I'N'o,okF1
Iokt INokt .

Weakening means that if we can deduce a result from some premises, then
we can deduce the same result from the same premises along with additional,
unused premises. Contraction means that any result deducible from some
duplicated premise is also deducible from only one copy of the premise. (This
only makes sense if we consider premises as sequences or bags, rather than
mere sets.) By rejecting contraction, weakening, or both, we can understand
propositions as standing for resources, which are conserved, rather than as
arbitrarily duplicable or potentially irrelevant truths.

Girard (1987) noticed that an interesting thing happens when structural
rules are removed. Consider these two versions of a conjunction introduction

rule for intuitionistic logic:

IL-AI IL-AI*
I'to 'kt I'o AFT
I'ont IAFoAT .

In the presence of weakening and contraction, these rules are interderivable,
but in a substructural logic, conjunction splits into two different connectives,

the additive conjunction (&) and multiplicative conjunction (®) of linear logic:

ILL-&I ILL-®I
I'to 'kt I'to AT
To&t I AFo®T

We can consider these linear connectives in light of the resource interpretation.

In the derivation of the additive conjunction I' - ¢ & 7, resources o and 7

T use natural deduction throughout this section because it makes the transition to
computational interpretations of the logics smoother. Similarly, metasyntactic variables are
chosen with an eye toward type systems.
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are constructed from the same resources I'; whereas, in the multiplicative
conjunction I';,A - 0 ® 7, resources o and 7 are constructed from separate
resources I' and A. Elimination rules for both conjunctions appear along with

the term assignment in figure 2.1.

Intuitionistic linear logic. In Girard’s linear logic, several more connec-
tives arise naturally from prohibiting weakening and contraction. For example,
the usual disjunction (V) splits into additive (&) and multiplicative (%) disjunc-
tions. Additive disjunction admits a simple resource interpretation: o & 7 is
either resource o or resource 7, as chosen by its two potential introduction
rules. Multiplicative disjunction is harder to understand. While several
computational interpretations involving concurrency and control have been
proposed (Abramsky 1993; Mazurak and Zdancewic 2010), in this treatment I
follow Bierman’s (1993) development of intuitionistic linear logic (henceforth
ILL), which omits 7.

Instead of multiplicative disjunction, ILL includes as primitive the (multi-
plicative) linear implication (—o), which is a derived connective in Girard. It too
has a simple resource interpretation: The linear implication o —o 7, from which
linear logic gets its name, represents the ability to transform resource o into
resource T without duplicating o. ILL also includes three nullary connectives,
which are units for the binary connectives: T for additive conjunction (&), 0

for additive disjunction (&), and 1 for multiplicative conjunction (®).

The exponential. While the logic that results from rejecting weakening and
contraction gives fine-grained control over resources, its inability to contend
with durable “truth” renders it unacceptably weak. Girard (1987) remedies
this problem by reintroducing weakening and contraction under controlled
conditions, using the new exponential connectives ? and ! (only the latter of
which appears in ILL). In the resource interpretation, o represents the ability

to produce zero, one, or more copies of resource o. Such resources, which I will
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call unlimited, admit weakening and contraction:?
ILL-WEAKENING ILL-CONTRACTION
'kt Ilo,lo-71
okt okt .

Girard shows that the addition of exponentials makes it possible to embed
intuitionistic logic in linear logic, in particular by factoring the usual intu-
itionistic implication into linear implication and an exponential that allows

dropping or duplicating the antecedent:
c—1 = lo—orT.

Exponential introduction and elimination are of particular concern in
this dissertation, as dealing with them cleanly is necessary for a practical

substructural programming language. The rules are

ILL-PROMOTION ILL-DERELICTION
TH1 I'lr
T+l -7
where IT" stands for a context !o1,...,l0} containing only unlimited resources.

We can understand promotion to mean that if a resource is derivable from only
unlimited resources, then that resource is also unlimited.? Dereliction means
that, given some unlimited resource |7, we may “forget” that it is unlimited

and obtain one copy of 7.

2Bierman (1993) uses more complicated versions of the weakening and contraction rules
for his natural deduction formulation:

ILL-WEAKENING* ILL-CONTRACTION™*
I'lo AFT I'lo Alo,lok1
LAt [LAbT '

I use his sequent calculus versions of the same rules, which are easily interderivable with
these versions, because they smooth the transition to implicit weakening and contraction.
3 Bierman also uses a more complicated version of the promotion rule:

ILL-PROMOTION™
I'ikloy - Tpklog lo1,...,lop 1

I'y,....T, T

This is necessary for his natural deduction formulation to be closed under substitution, but
when modeling a call-by-value language, we need to substitute only normal proofs, which
makes the simple version of the promotion rule given here sufficient.
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A term assignment. In order to consider ILL as a type system for a pro-
gramming language, we require a term assignment. A term assignment based
on Bierman’s (1993), which uses terms similar to a core functional language,

appears in figure 2.1.

2.1.1 Use Types and Standard Types

Wadler (1991) considers several changes to make ILL more suitable as a
programming language. First, he makes the exponential rules (promotion,
dereliction, contraction, and weakening) implicit rather than syntax-directed.
Going further, however, he observes that dereliction is similar to a subtyping
rule, whereby a term of type !0 may be used where a term of type o is expected.
Thus, we may define a subtype relation for linear types that extends dereliction

through other type constructors:

o <o r<:7 og<:0' r<:7

lo<:0 o—o1<:0 —o1 o®1<:0 01

Then add a subsumption rule for terms:

ILL-SUBSUME
I'ke:o o<:T

T'ke:t

It is straightforward to show that a derivation using subsumption can be
translated to a derivation without subsumption, using the lemma that if o <: 7
then there exists a term e such that Fe:0 — 1.

Unfortunately, as Wadler points out, the resulting type system does not
enjoy principal type schemes. Consider, for example, term Ax.A1y.xy. It has
several types, including (¢ —o 1) —o (0 — 1) and (0 — 7) —o (0 — 7). However,
the greatest lower bound of those two types under the proposed subtyping
order, (0 — 7) —o (0 —o 1), is not a type of term Ax.Ay.xy, nor is it even a
theorem of ILL. Thus, the term does not have a principal type scheme in
ILL-with-subtyping.
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p,0,T :=T|0|1|o—o1|0®T|0&T|0®T| !0 propositions
x,y,z2 € Var term variables
e,f,g == x| discardxine | copyxasy,zine | derelicte proof terms

| promotee | Ax.e | ef | {e,f) | let{x,y)=einf | [e,f] | fste | snde

inle | inre | caseeofinlx — f;inry — rue | tfalsee
linle | | finl y—g | true | fal | O

|let)=einf
(intuitionistic linear logic)
ILL-IDENTITY ILL-WEAKENING ILL-CONTRACTION
I'ke:1 ylo,z:loke:t
xokx:0o I'x:lodiscardxine:t I'x:lo-copyxasy,zine:t
ILL-DERELICTION ILL-PROMOTION
I'ke:lo The:o
I'+derelicte: o IT - promotee:lo
ILL-—oI ILL-—E
INxokte:t 'Fe:o—o1 AFf:o
I'FAx.e:o0—1 IAlef:t
ILL-®1 ILL-®E
I'ke:o AFf:T I'Fe:o®t Ax:o,y:t=f:p
ILAF(e,fY:00T [LAFlet{x,y)=einf:p
ILL-&I ILL-&E; ILL-&Es
IFe:o r'f:t lte:0&t te:0&T
I'Hle,fl:o&t I~fste:o I'snde:1
ILL-oE
I'Fe:ooT ILL-oI; ILL-eI,
Axobf:p AyTthkg:p Ite:o I'ke:t1
I'LAtcaseeofinlx — fiinry—g:p Iinle:oeT ltinre:ocot
ILL-TI ILL-OE ILL-11 ILL-1E
I'te:0 lke:1 AFf:o
I'true: T I'Hfalsee:t FO:l IAFlet)=einf:o

Figure 2.1: Term assignment for ILL
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Use types. Principal types can be recovered, Wadler suggests, if there is
some way to connect the presence or absence of the exponential on the domain
and codomain of the type. To achieve this, Wadler introduces use types, which
allow parametrizing over the presence of exponentials. A use is either a use

variable or a constant 0 or 1, and the exponential is annotated with a use:

w,v € UVar use variables
i,j,ku=pul0]1 uses
0,0,T == - | 't use types

Then 1o is like lo in ILL, and !0 is merely o.
Type schemes now include a constraint, which is a set of inequalities on

uses, where 1= 0. Then Ax.Ay.x y has the principal type scheme
li(t —0g) —o V(T —00) [i=jl.

The two types given above for the term, as well as (1 —o 0) —o 7 —0 0, are

instances of the scheme, while the incorrect type is not.

Standard types. Use types seem like a significant improvement over ILL,
since they allow polymorphism of linearity. As a simplification, Wadler
suggests that the syntax of use types be regularized as follows. Since the
exponential is idempotent, the ability to repeat exponentials can result in
more complicated types but does not increase expressiveness. Thus, Wadler
suggests building the exponential into the syntax of types in only certain

places:
p,0,7 :=1't—oo | '1elVo | 'telVo standard types

Wadler gives a type inference algorithm for standard types, asserts that it finds
principal type schemes, and suggests what a proof might look like. Standard
types are sound for linear types, in that if a term has a standard type, then
all linear type instances of that standard type are also types of the term.
Additionally, standard types are complete for linear types, in that if a term
has a linear type, then it has a standard type of which that linear type is an

instance.
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2.1.2 Steadfast Types, A\URAL, and Uniqueness Types

A common misconception about linear types is that a value of linear type
cannot be aliased. A linear type system prevents aliasing of a value whose
type is linear, but it does not actually guarantee the uniqueness of values of
linear type, because of dereliction. In particular, the systems described in this
chapter so far allow an unlimited value, which may already be aliased, to be

derelicted to a linear type:

I'e:lo The:llo i>j

I'te:o The:lVo

If we want better control of aliasing, rather than treating dereliction as

subtyping, we might do away with dereliction altogether.

Steadfast standard types. Wadler (1991) suggests a way forward with
steadfast (standard) types, in which the promotion and dereliction rules for
exponential introduction and elimination are removed. Instead, promotion
is rolled into the introduction rules for all type constructors, and dereliction
is likewise performed by each elimination rule. For example, here are the
introduction and elimination rules for the linear function type in Wadler’s
system of steadfast standard types:

SST-—o1 . SST-—E o .
C;'T,x:l'oFe:t C;'Tre:V(ig —o1) DV AR F:lig

CAI= j;U'THAx.e: V(g —o1) CAD;UT,/VAef:t

(I and J are sets of uses, where !'T is an environment whose range contains
types with uses I. C and D are constraints comprising use inequalities, where
I = j means that i = j for each i € I.) Rule SST-—I includes promotion,
because it gives the resulting function type a use based on the uses in the
environment, which the promotion rule does for use types and ILL. Similarly,
rule SST-—FE allows applying a function with any use on its type, which
means there is no need for a separate dereliction step.

Thus, with steadfast standard types, the use on a type is determined when

that type is introduced, never changes, and does not need to be removed by
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dereliction before that type is eliminated. This guarantees that a value of
linear type is not aliased, since it is now impossible to alias an unlimited value
and then derelict it to get an aliased, linear value. This strong non-aliasing
property of steadfast types means that when a heap-allocated value of linear
type is eliminated in a steadfast system, it is guaranteed that there are no
other pointers to the same heap value, which makes it safe to immediately

free or reuse the memory at the point of elimination.

AURAL A small change to the type structure of steadfast standard types

yields Ahmed et al.’s (2005) AYRAL a polymorphic, substructural A calculus

AURAL " uses are replaced by

with even finer control of resource usage. In
substructural qualifiers, which determine which structural rules apply to a
given type. Qualifiers include type variables and four qualifier constants:
L, for linear, allows neither contraction nor weakening; A, for affine, allows
weakening but not contraction; R, for relevant, allows contraction but not

weakening; and U, for unlimited, allows both contraction and weakening. The

available structural rules naturally induce a subsumption lattice on qualifiers.

In AURAL 4 type is composed of a qualifier, which specifies which structural

rules apply, and a pretype, which specifies the introduction and elimination

rules:
a,B,y € TVar type variables
Ex=a|U|R|JA|L qualifiers
p,0,T=alo—oT|0o®T|0®T |1 pretypes
0,0,7T == a | °T types

For example, consider type R(o ® 7). Its qualifier, R, indicates that contraction
but not weakening applies to variables of this type; its pretype, o ® 7, indicates
that terms of this type are introduced and eliminated as pairs.

Unlike use types and standard types, AYRAL has neither subtyping nor
qualifier constraints on type schemes, which means that term Ax.1y.xy has
all types of the form

{10 —oT) —2(0 —o 7))
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where ¢ E &o. Such a constraint is not expressible as a AURAL type.
In chapter 8, I use AYRAL to explore the interaction of substructural types

and control, so a full presentation of the system appears there.

AURAL oliminate dereliction and

Uniqueness types. Steadfast types and
promotion altogether. Another possibility, if the goal is to track uniqueness, is
to reverse the direction of dereliction. That is, rather than o <: !OU, allow that
19 <: 11, where %0 indicates a unique, unaliased value, and ‘o indicates a
value that is potentially aliased. Subsumption then amounts to forgetting the
uniqueness of a value. Uniqueness types guarantee that a value has not been
aliased, linear types guarantee that a value will not be aliased, and steadfast
types guarantee both.

This is the direction taken by the Clean programming language (Brus
et al. 1987). Uniqueness types are similar to AYRAL types, but instead of use

qualifiers, types are composed of pretypes and uniqueness attributes:

a,B,y € TVar type variables
i,j,k i=a|e| x uniqueness attributes
p,0,T=alo—1]|1 pretypes
0,0,T == a | iT types

Uniqueness attribute ¢ indicates a unique value and x a potentially shared
value. In the partial order of uniqueness attributes, unique is bottom and

shared is top:

o<i i<X

In Clean, weakening applies to all types, but contraction applies only to
non-unique types. However, (first order) unique values may be duplicated by

forgetting their uniqueness, which is permitted by Clean’s subtyping relation:

1<j o is not a function pretype

‘o <o

In addition to subtyping, Clean types involve uniqueness constraints analogous

to the use constraints found in Wadler’s standard types.
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One complication of Clean is that uniqueness subtyping does not apply
to function types. The uniqueness attribute of a function is determined in a
similar manner to the promotion rules of previous systems in this chapter:
A function type gets attribute e if any of the values in its closure are unique.
To guarantee that the uniqueness of those attributes is accurate, the system
must ensure that a unique function is applied at most once. In Clean parlance,

such a value is necessarily unique, which means essentially the same thing as

affine.

A simplification. De Vries et al. (2007) propose a new treatment of unique-
ness types that eliminates the need for constraints and subtyping. To get rid of
the need for uniqueness constraints, they first extend the syntax of uniqueness

attributes to a Boolean algebra:
iL,j,ku=al|e| x|l |iAnj|iV] equality-based uniqueness attrs.

Then any inequality constraint on uniqueness attributes may be solved, by
Boolean unification, to yield a substitution that gives the same type scheme
without the constraint. For example, given a constrained type scheme of the
form

L L T 1 )

the most-general Boolean unifier is {i — i,j — i Vv k}. Substituting, we get the

equivalent, constraint-free type scheme

LA

Instead of subtyping, de Vries et al. (2007) use slack variables according
to the polarity of types, as follows. Where ¢ (unique, the bottom uniqueness
attribute) appears in a covariant position, it is replaced with a type variable;
similarly, a type variable replaces x (shared, the top uniqueness attribute)
in contravariant positions. If the types of library functions have slack vari-
ables that correctly reflect their polymorphism over uniqueness, then useful
polymorphic types are inferred for user functions as well.

A similar technique could be used to replace use variable constraints in

Wadler’s systems of use types and standard types.
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2.2 Typestate

As a first special-purpose, stateful type system, we consider typestate. The
original concept of typestate predates the substructural logics and type systems
of the previous section. Thus, while the original theory does not rely on
substructural types, we will see that typestate is a straightforward application
of substructural types.

Strom and Yemini (1986) introduce typestate as a way to track the states
of resources, to determine which operations on those resources are valid at
a given program point. In this section, I discuss a more recent approach
to typestate embodied by the safe, low-level programming language Vault
(DeLine and Fahndrich 2001).

In Vault, values may be associated with compile-time keys, which track
value ownership and state. The type checker maintains a held key set at each
program point, ensuring that keys are neither duplicated nor dropped. (That
is, keys are linear.) The key for a particular tracked value must be in the held
key set at any program point where the associated value is accessed. DeLine
and Fiahndrich give the simple example of allocating a tracked object p with a

new key named P:
tracked(P) point p = new tracked point {x=3;y=4;};

After such a declaration, P is in the held key set, which permits access to p.
A function that operates on a tracked value is annotated with a specification
for how it treats the associated key. For example, consider a function that

computes some property of a point:
double norm(tracked(K) point p) [K];

Function norm takes any point p tracked by some key K. The annotation [K]
indicates that key K must be held when norm is called and continues to be
held after norm returns. Annotations can also indicate that a function adds to
or removes from the held key set. Attempting to access a tracked value when
its key is not in the held key set is a type error. For example, norm(p) is a type

error here because delete has already removed P from the held key set:
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connect()

=

'A.~.." A'~~'A. * \\ «...‘..A
listening] ! (ready D
®

SN—"7 SN—"7 S -7
socket() J listen()
close()

Figure 2.2: States and transitions for TCP (simplified)

delete p;
f=norm(p);

2.2.1 Key States

Keys alone track ownership, but Vault adds to this the ability to associate with
each key a state token, which reflects the state of the tracked value. As an

example, DeLine and Fahndrich show a Vault interface for Berkeley sockets,

the standard C language interface to network communication (Stevens 1990).

Transmission Control Protocol (TCP), which provides reliable byte streams, is
the standard transport layer protocol used by most internet applications (e.g.,
SMTP, HTTP, and SSH). Setting up a TCP session using Berkeley sockets is a
multi-step process (figure 2.2).

A network client must first create a communication end-point, called a
socket, via the socket() system call. It may optionally select a port to use with
bind(), and then it establishes a connection with connect(). Once a connection
is established, the client may send() and recv() until either the client or the
other side closes the connection.

For a server, the process is more involved: It begins with socket() and bind()

as the client does, and then it calls listen() to allow connection requests to



18

CHAPTER 2. STATEFUL TYPE SYSTEMS

interface SOCKET {
type sock;

variant domain [ ‘UNIX | ‘INET I,
variant comm_style [ ‘STREAM | ‘DGRAM 1,
tracked(@raw) sock socket(domain, comm _style, int);

struct sockaddr { ... };

void bind(tracked(S) sock, sockaddr) [S@raw—named];

void listen(tracked(S) sock, int) [S@named—listening]l;

tracked(V) sock accept(tracked(S) sock) [S@listening, new N@ready];

void recv(tracked(S) sock, byte[l) [S@ready];
void close(tracked(S) sock) [-S];

Figure 2.3: Vault interface to TCP (server only)

begin queuing. The server calls accept() to accept a connection request. When
accept() succeeds, it returns a new socket that is connected to a client, and the
old, listening socket is available for further accept() calls. (For simplicity, I
omit error transitions for now, but I discuss errors in §2.2.2.)

DeLine and Fahndrich’s Vault interface for setting up a server-side TCP
socket (2001, p. 4) appears in figure 2.3. The interface uses the same state
names as the diagram in figure 2.2, and the same transition names, except that
it omits send and connect. Function socket returns a new socket tracked by a
key in the raw state, indicated by the return type tracked(@raw) sock. (The
prototype for socket avoids naming the key, since the type of socket only needs
to mention the key or its state once.) Function bind takes a socket tracked
by some key S which must be in the raw state, and transitions the key to the
named state; similarly, listen transitions from state named to state listening.
Function accept takes a socket tracked by some key S in state listening, and
leaves socket S in that same state, but it also returns a new socket tracked by
a new key N in state ready. Function recv requires a socket in state ready and
leaves it in that state. Finally, close takes a socket whose key S is in any state

and removes S from the held key set, which prohibits further operations on
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the corresponding socket.

2.2.2 Dynamic and Disjunctive Typestate

The Vault interface presented in the previous section relies on simplifying the
state machine to obtain a property that does not necessarily hold in real-world
APIs: a given transition can start in only one state or in any state (as close
does), rather than a select subset of states; a transition always ends in one
defined final state. This simplified notion of state machine cannot deal with

two features of the actual Berkeley sockets TCP interface:

* When setting up a client, connect requires as a precondition either state

raw or named; that is, the precondition is disjunctive.

¢ Each operation may fail, leaving the socket in the same state that it
was in before attempted state transition; that is, the postcondition is

disjunctive.

Vault provides a way to represent disjunctive typestates using algebraic
data types, which allow dynamic management of keys and key states. For
example, to add the connect operation, we can declare an algebraic data type
with two constructors, one for each potential state in the precondition of

connect:.

variant connectable<key S> [ ‘Raw {S@raw} | ‘Named {S@named} ];

Constructing an instance of the variant requires a held key in the given state,
and removes that key from the held key set; variants are destroyed by pattern
matching, which reintroduces the key and its state into the held key set. Then

connect can have the following prototype:

void connect(tracked(S) sock, string, int, tracked(C) connectable<S>)
[-C, +S@ready];

That is, connect takes a socket tracked by key S, but does not require any

precondition on S in its effect annotation. Instead, it requires a value of type
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tracked(C) connectable<S>, which is a dynamic witness that S is in either the
raw or named state. Furthermore, the connectable variant is itself tracked by
key C to ensure that the dynamic witness is not duplicated. The typestate
effect of connect is to remove C from the held key set, since the variant no
longer accurately reflects the state of the socket, and to add key S at state
ready back to the held key set.

Similarly, algebraic data types can be used to encode failure by having
operations that can fail return a variant, which must then be pattern matched
to check for failure. As an example, DeLine and Fahndrich give a prototype

for a version of bind that can fail:

variant status<key K> [ ‘Ok {K@named} | ‘Error(error _code) {K@raw} I;
tracked status<S> bind(tracked(S) sock, sockaddr) [-S@raw];

Now bind takes a socket in state raw and removes its key from the held key set,
and returns a status value. If the operation succ