
Taking Part-Time Programmers Seriously

Jesse A. Tov
Northeastern University, Boston, Mass., USA

tov@ccs.neu.edu

Elizabeth Tov
Boston College, Chestnut Hill, Mass., USA

elizabeth.tov.1@bc.edu

Programming is now a necessary activity for people working
in many disciplines, from biology to sociology. However, the
languages and tools used by many “part-time programmers”
have not benefited from programming languages research,
which presents both an opportunity and a challenge. Given
the large number of new programmers who lack bad habits
and prejudices, we have a fresh chance to encourage adop-
tion of robust techniques and good technology. To make
this happen, programming languages experts must develop
languages and tools that provide demonstrable advantages
to new part-time programmers (§1), and we need to invest in
a pedagogy that ensures their success in acquiring relevant
programming skills (§2).

1. Discipline-Specific Languages
Biologists are now part-time programmers; sociologists, lin-
guists, and economists are programmers too. Physicists have
long been programmers, and they have earned a reputation
for writing bad code in difficult, error-prone languages. For
physics, the train has probably left the station, but in other
disciplines, programming languages researchers may have
a chance to make a positive difference. We can help, first,
by providing appropriate technology and demonstrating its
benefits.

Consider, for example, quantitative research in sociology.
Sociologists typically use software packages such as SPSS
and Stata to perform statistical analyses. Each of these is
a graphical program built around a core domain-specific
language for statistics. Users of these programs may begin
by using them in a menu-driven manner, but many eventually
advance to typing commands into an interactive interpreter.
Users may save a sequence of commands in a “script” in
order to re-run an analysis again in the future, often modify-
ing the script before each subsequent run to reflect chang-
ing circumstances or strategies. This suggests a need for
parametrization, but in practice the poor abstraction facili-
ties provided by these languages are left unused by all but
the most expert users. (Even iteration, which programmers
would consider indispensable for data management, is not
widely understood.) Better statistical languages, such as R,
are available, but these have a reputation among sociologists
that the effort to learn them is not worth the payoff.

Programming practice in sociology is thus caught in a
gap between antiquated, badly designed languages that no
one learns properly and a more reasonable (albeit strange)
language that no one learns at all. Yet quantitative sociol-
ogists would clearly benefit from both improved tools and
improved programming skills. Besides a language with sta-
tistical facilities, this will require an IDE with a graphical
data editor, the ability to perform simple statistical analyses
using menus (while generating syntax), and convenience
features such as identifier completion. However, developing
a superior tool is insufficient. We also need to demonstrate to
potential users why adopting new technology is worthwhile,
and to provide a way for them to learn to use the new tools.

2. How to Design X Programs
If we build it, will they come? Not without our help.

The undergraduate social science major in a required in-
troductory statistics course performs two marginally related
tasks. First, she memorizes mathematical formulae for sev-
eral statistics; second, she uses a software tool, such as SPSS,
to actually perform statistical analyses. Much of the course
is about learning to use the software, but any understanding
of how the software connects to the memorized formulae is
cursory, and understanding of the software itself is shallow.
We propose that programming would facilitate deeper and
more integrated understanding.

The How to Design Programs curriculum has been
used successfully to teach introductory programming to
thousands of high school and college students at a variety
of skill levels. It assumes no prior programming knowledge
and, importantly, no specialized domain knowledge either.
Instead, the domain is pictures and time: Students learn
to create interactive animations and games in an untyped,
functional programming language designed specifically for
teaching. We envision a course where the domain is, instead,
statistics—that is, we propose making the introductory
course in statistics a course in programming, with statistics
as the domain for examples and exercises. Students who
implement the basic statistical operations will find both
the mathematics and the software less mysterious, and the
programming skills acquired will translate to more effective
use of other statistics languages in the future.


	Discipline-Specific Languages
	How to Design X Programs

