Exceptions are invaluable for
structured error handling in
high-level languages, but they
are at odds with linear types.
More generally, control effects
may delete or duplicate por-
tions of the stack, which, if we
are not careful, can invalidate
all substructural usage guaran-
tees for values on the stack.
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Control Operators

exceptions, call/cc, shift
and reset, coroutines, ...




Substructural Types

linear types, affine types,
typestate, session types, ...
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Substructural Types

type file :

val open :
val read :
val write :
val close :

A

string — file

file — file x char
file x char — file
file — unit




Substructural Types

type file : L
val open : string — file
val read : file — file x char

val write :
val close :

file x char — file
file = unit







let confFile = open confFileName in
let (conf, confFile) = parseConfFile confFile in
let logFile = open conf.logFileName in
close confFile;
logFile



let confFile # (file:conf) in
let (conf, confFile) = parseConfFile confFile in
let logFile = open conf.logFileName in

close confFile;
logFile



let (conf, confFile) = parseConfFile # (file:conf) in
let logFile = open conf.logFileName in

close confFile;
logFile



let (conf, confFile) = ({ ...}, #(file:conf)) in
let logFile = open conf.logFileName in

close confFile;
logFile



let logFile =open | ... |.logFileName in
close #(file:conf);
logFile



let logFile = open “/var/log/...” in
close #(file:conf);
logFile



raise IOError
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exceptions
effect names: C P(Exn)
pure effect: | %]
sequencing: © U

qualifier bound: > o = A

12




)\URAL(G)
¢=I(C, L,6, ~)

exceptions shift/reset

effect names: C P(Exn) [U,R,A,L}
pure effect: | %} L
sequencing: © U M

qualifier bound: > o = A FQ>=Q
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Application

M Fejer
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(check e7) M +ep: T —0OT
(check e3) M Fey: T

M Fejey: T

13




Context Splitting

(check 1) M Fep: T —OT
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Qualifier

check e; M k-ep: Q' —oT
check e, Mo key: T
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Control Effects
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Control Effects
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Effect of e,
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check e;
check e;
e, effect ok
e, resources
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Application

check e; M+ ey A o7 ;€1
check e, Mokey: T ;¢

e, effect ok Fecyp = Q

e, resources FIMy < Qy

e effect ok Fecp = Qo
net effect Fc19cOc: CTL
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Does It Work?

let confFile = open confFileName in
let (conf, confFile) = parseConfFile confFile in
let logFile = open conf.logFileName in

close confFile;
logFile
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Does It Work?

let confFile = open confFileName in

let (conf, confFile) = parseConfFile confFile in

close confFile;

let logFile = open conf.logFileName in
logFile
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Does It Work?

Theorem (Type safety).
If et-e: 7 ;_L then eval(e) # Wrong.

Proof (Parametrized by C).

Transform e to continuation-passing style. ..
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Does It Work?

Theorem (Type safety).
If et-e: 7 ;_L then eval(e) # Wrong.
Proof (Parametrized by C).

Transform e to continuation-passing style. ..

Three instances for C: exceptions, shift/reset, and
shift/reset with answer-type modification
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The Take-Away

Designing a substructural type system?
Considering adding control effects?

Read our paper

http://www.ccs.neu.edu/~tov/pubs/
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