Exceptions are invaluable for
structured error handling in
high-level languages, but they
are at odds with linear types.
More generally, control effects
may delete or duplicate por-
tions of the stack, which, if we
are not careful, can invalidate
all substructural usage guaran-
tees for values on the stack.

A Theory of
Substructural Types & Control

Jesse A. Tov Riccardo Pucella

OOPSLA
October 26, 2011

Control Operators

exceptions, call/cc, shift
and reset, coroutines, ...

Substructural Types

linear types, affine types,
typestate, session types, ...

Substructural Types

Substructural Types
L=1

Substructural Types
L=1

Substructural Types
L=1

Substructural Types
L=1

Substructural Types

type file :

val open :
val read :
val write :
val close :

A

string — file

file — file x char
file x char — file
file — unit

Substructural Types

type file : L
val open : string — file
val read : file — file x char

val write :
val close :

file x char — file
file = unit

let confFile = open confFileName in
let (conf, confFile) = parseConfFile confFile in
let logFile = open conf.logFileName in
close confFile;
logFile

let confFile # (file:conf) in
let (conf, confFile) = parseConfFile confFile in
let logFile = open conf.logFileName in

close confFile;
logFile

let (conf, confFile) = parseConfFile # (file:conf) in
let logFile = open conf.logFileName in

close confFile;
logFile

let (conf, confFile) = ({ ...}, #(file:conf)) in
let logFile = open conf.logFileName in

close confFile;
logFile

let logFile =open | ... |.logFileName in
close #(file:conf);
logFile

let logFile = open “/var/log/...” in
close #(file:conf);
logFile

raise IOError

»
_;c'x/ﬁ r-"f‘

(A

exceptions

ﬁ\ affine types ©
" linear types S

J

A
(A
exceptions shift/reset
ﬁ\ affine types © @
" linear types S @

(Danvy & Filinski 1989)

3\
b

A
A
exceptions shift/reset
affine types © ©-0
I&\ linear types -0 -0

Al

10

10

10

)\URAL

/ L\
R Quadlifiers A

N

A

n

(Ahmed et al. 2005)

J & (Ahmed et al. 2005)

RAL
)\U

VO

R Q A

A4

FT<Q
FIM<Q

J & (Ahmed et al. 2005)

)\URAL(G)
¢=(C 1,6, =)

12

)\URAL(G)
¢=I(C, L,6, ~)

effect names: C > ¢

12

)\URAL(G)
¢=I(C, L,6, ~)

effect names: C > ¢
pure effect: L. € C

12

)\URAL(G)
¢=I(C, L,6, ~)

effect names: C > ¢
pure effect: L. € C
sequencing: © :CxC—~C

12

URAL
AT(C)
e = (CI _LI ®I t)
effect names: C > ¢
pure effect: L. € C

sequencing: © :CxC—~C
qualifier bound: = C Cx Q

12

)\URAL(G)
¢=I(C, L,6, ~)

exceptions
effect names: C P(Exn)
pure effect: | %]
sequencing: © U

qualifier bound: > o = A

12

)\URAL(G)
¢=I(C, L,6, ~)

exceptions shift/reset

effect names: C P(Exn) [U,R,A,L}
pure effect: | %} L
sequencing: © U M

qualifier bound: > o = A FQ>=Q

W

12

Application

M Fejer

13

Application

(check e7) M +ep: T —0OT
(check e3) M Fey: T

M Fejey: T

13

Context Splitting

(check 1) M Fep: T —OT
(check e;) Mokey: T

M HBEMDFejer: T

13

Qualifier

check e; M k-ep: Q' —oT
check e, Mo key: T

M Blr-ejer: T

13

Control Effects

C

(check eq) M+ ey ; C1
(check ey) o F e 7 C2

F] EEle—el (=D)

13

Control Effects

(check) M1k ey < ; €1
(check e,) Mo es ;€2
(net effect) Fc19cpOc: CTL

F] EEle—el (=D)

13

Control Effects

check e M+ ey = ;1 C1
check e, o es ; C2
net effect Fc19cOc: CTL

M EMEee) ;€19 Oc

P

13

Effect of e,

check e M+ ey Q ;1 C1
check e, o es ; C2
net effect

F] EEle—el (=D)

13

check e
check ey

e, effect ok

net effect

Effect of e,

ke @
r2|—e2 ; C2
|_C2>__Q1

1 €1

r] EElrzi—e] (D)

13

check e
check ey

e, effect ok

net effect

Effect of e;

M e
r2}_ez

7 €2

1 €1

r] EElrzi—e] (D)

13

check e;
check e;
e, effect ok
e, resources
e effect ok

net effect

Effect of e

r1|—e1
Mok e : €y

FIM 2 Q2
Fecp = Qa

1 €1

r] EErzl—e] (=)))

13

Application

check e; M+ ey A o7 ;€1
check e, Mokey: T ;¢

e, effect ok Fecyp = Q

e, resources FIMy < Qy

e effect ok Fecp = Qo
net effect Fc19cOc: CTL

MMBlrkFeje:7;¢19c¢0c

v

e
13

Does It Work?

let confFile = open confFileName in
let (conf, confFile) = parseConfFile confFile in
let logFile = open conf.logFileName in

close confFile;
logFile

14

Does It Work?

let confFile = open confFileName in

let (conf, confFile) = parseConfFile confFile in

close confFile;

let logFile = open conf.logFileName in
logFile

14

Does It Work?

Theorem (Type safety).
If et-e: 7 ;_L then eval(e) # Wrong.

Proof (Parametrized by C).

Transform e to continuation-passing style. ..

15

Does It Work?

Theorem (Type safety).
If et-e: 7 ;_L then eval(e) # Wrong.
Proof (Parametrized by C).

Transform e to continuation-passing style. ..

Three instances for C: exceptions, shift/reset, and
shift/reset with answer-type modification

15

no effect system

ya

\éo 3

< 2
Choose Two

exceptions linear types

\ this work
Ny ;i\
= i\ [}
J 1

(A ‘

16

The Take-Away

Designing a substructural type system?
Considering adding control effects?

Read our paper

http://www.ccs.neu.edu/~tov/pubs/

17

