
Teaching Statement of Jack Tumblin
 2006, Northwestern University, EECS Department

Fast computer graphics hardware is now available almost everywhere, from servers to laptops to cell-
phones and PDAs. However, most engineering students and researchers still regard computer graphics
programming as an exotic, time-consuming and difficult task, suitable only for large commercial
software products such 3DStudioMAX, MATLAB plots, Maya or Blender modeling software,
Renderman, Photoshop, Origin Graphing, Illustrator and Premiere. I disagree, and I have designed a
series of Computer Graphics courses to demonstrate that any student or researcher ready to write a
problem-solving program in a modern language (C/C++, Java, Python, etc.) is also ready to enhance and
extend its usefulness with interactive 2D and 3D graphics, drawings, and visualizations, once they
understand the underlying principles
involved. The increasing success of these
courses in terms both of enrollment and
CTEC evaluations has proven the utility of
my approach.

The two core graphics courses that I have
designed and that I teach (CS351:
Introduction to Computer Graphics; and
CS395/495 (CS352) Intermediate Computer
Graphics) provide the knowledge, give
students ‘starter code,’ practical experience
gained from projects, the ability to debug,
and a clear understanding of how to move
beyond these libraries. As well as providing
particular skills, Computer Graphics can
also teach particular ways of thinking. I see
classroom teaching and course development
as perhaps the best way to help the NU
community to adopt the fundamental
problem solving abilities available through
interactive 2D and 3D graphics, drawing
and visualization.

 Essential Approaches:
I’m still surprised by how much I like to teach
much more I am still learning and improving af
help attract more students to Computer Science
 “Works wonders in explaining complex p
 “One of the best profs I’ve had at NU in

 “This is one of the few classes where not
 but I can practically DO more as well. I'
 my career.”

and in 2005-6, my CTEC average was 4.6 / 6 (1

Figure 1: CS352 Advanced Computer Graphics, Winter 2005;
student Eric Russell’s ray-tracer exhibits shadows, texture,
antialiasing, chromatic aberration (colored fringes on glass)
‘faked’ caustics, Perlin Noise and more. One of two project
assignments in the course, we follow this with particle systems.
classes, by how much I’ve learned doing it, and by how
ter 5 years. I have concentrated on basic courses that
. For many students, I have found just the right balance:
rogramming ideas...

terms of human quality!” [CTEC] CS110 Spr2006

only do I KNOW more than I did when I started,
ll use the concepts I learned in this class throughout

 [CTEC] CS 351, Fall 2005

==very low; 6==very high).

Most students with a typical undergraduate course load confront a jumbled torrent of information that no
ordinary person can absorb; faculty says “Here, take this: a whole gallon of the world’s very best paint!
Don’t waste it! (and I’ll give you a bucket for it at the end of today’s lecture)”. Too much of
undergraduate education sticks with us about as well as paint dumped in our hands—we get drenched in
it, we’ll always recognize the color and feel of it anywhere we see it, and we’ll know a book or two
where we can always find more, but we wash off most of our course materials before graduation day.
How can we get the most useful information across to students in the most memorable, applicable ways?

My best answers are still evolving, but my key strategies in these courses are:

1) Teach Debugging Strategies as Thoroughly as Programming. Surprisingly many
‘experienced’ engineering students, even CS students, have poor debugging skills, backup,
and version-control strategies that can fail catastrophically for larger programs. Accordingly,
I teach simple safeguards to all my students, not just the beginners; for example, if they e-
mail their source code to themselves every day, then even a stolen laptop will not destroy
their work. Beginning students are especially vulnerable to frustrations and discouragement
in debugging, and as frustrations grow they resort to increasingly random changes to their
programs, often hopelessly compounding their errors and sense of helplessness. To combat
this, I give every class some hands-on instruction in debugging (even in advanced classes and
seminars), and reinforce it with short handout (see file: Tumblin2.02_DebugAdvice03.pdf)
giving polished guidelines I’ve developed over several years. Debugging instruction has
been extremely effective in eliminating over-ambitious student projects that ‘crash and burn’,
heartbreaking file losses, and programs that worked the week before due dates but don’t
work days later. It reduces dropout rates, and seems to greatly increase student happiness and
confidence. Projects are now far more ambitious; I’ve had CS student tackle fluid dynamics
and finite-element re-meshing with happy outcomes under very tight time constraints.

2) Studio-Style Instruction, Free-form Projects, and ‘Starter Code’. Lectures are boring for
most students most of the time, and in computer science we’re often trying to teach skills
students can practice at their desks. Bored students at Northwestern skip classes and fall
behind. Early on, I found that the more I prepared written notes and slides for lectures, the
less the students needed (or appreciate) the lectures those notes were intended to illustrate.
Instead, they’d rather read lecture notes and PowerPoint slides before class, discuss them in
class, and spend that class time resolving any confusions. We try other examples and try
exploring a broader set of related ideas, and expand on the contents of PowerPoint slides and
written lecture notes. Whenever practical, we collaboratively write programs to test ideas.
This ‘studio style’ approach makes projects more relevant, and I find that the least-restrictive
assignments (“do something that looks amazing using this graphical technique”) often
produce the most ambitious and satisfying results; I’ve dropped my step-by-step ‘dictatorial’
early assignments entirely. To help student efforts, I provide starter code to act as
‘scaffolding’ for students to build graphics projects. Freed from the usual irrelevant
difficulties of getting the first colored pixel or rendered triangle on-screen, students get to
spend more of their project time experimenting with ideas and learning course content.

Accomplishments:
To this end, I have re-designed or developed a new course almost every year since my arrival at
Northwestern, for a total of five courses in five years.

• In my first year (2001-2), Ben Watson taught CS351 “Introduction to Computer Programming,”
and we jointly designed and taught a research seminar (Winter 2002: Advanced Computer
Graphics) to broadly survey current research work; I continued the course the following year
(Winter 2003), revising and improving it.

 2

• Over Winter and Spring 2002 I also designed a wholly new course on Image-Based Modeling
and Rendering (IBMR) methods, combining conventional photography with in-depth study of
projective geometry, finding homographies by DLT, 3D warping and re-projection. I refined this
course and taught it again in 2004 and 2005, modifying its contents towards computational
photography topics, improving the projects and starter code substantially.

• In my 3rd year (2003-4) we revised the graphics curriculum to include Bruce Gooch, planning
a 3-course core curriculum for the following year. To fit last-minute schedule constraints,

• I taught both the introductory (CS351) and the intermediate (CS352) graphics courses in
my 4th year (2004-5). Despite the short preparatory period, I substantially revised both CS351
and CS352. I reorganized 351 into a 4-part project-oriented course, moving away from its
largely lecture-driven previous format, re-writing and updating course materials as we went, and
using the old book sparingly (Fall 2004 CTECs confirmed the old book was widely disliked). At
the same time I designed a smoothly-compatible follow-on syllabus for CS-352.

• I converted both courses to follow a much more interactive, studio-style instructional format,
giving intentionally broad assignments to encourage more imaginative and ambitious work. The
general form was: “using these tools, show me something amazing,” and I was delighted with the
range of projects; from fluid-dynamic-driven flags flying in the wind, to geometric model
simplifications of dendritic crystals formed in cooling metals.

• In my 5th year, greater preparation time permitted substantial improvements, and I again taught
both CS351 and CS352; instituting a new, much better book, a refined syllabus, and
incorporation of student suggestions on teaching and project guidance. I completed new ‘starter
code’ to jump-start student projects, and refined the course notes and outlines as well. CTEC
scores suggest these improvements have been very effective at increasing students’ knowledge,
and their enthusiasm for the course.

I have also contributed substantially to the McCormick and CS undergraduate curriculum in each of my
5 years at NU by teaching CS110 “Introduction to Computer Programming”. This course, intended
for non-majors with no background in computer programming at all, is made more challenging by a split
enrollment, as it also attracts incoming CS students who wish to strengthen their grasp of programming
basics. When I arrived in Fall 2001 to teach the course, I found an aging book on C, an obsolete and
very slow, old 2D drawing package used in an ambitious 4-stage progressive programming project, and
a reputation as extremely demanding for non-CS majors. I first worked to re-organize the course notes,
and then the syllabus and project assignments to provide more introductory materials and explanation,
lowering entry barriers for non-majors. I did my best to supply any missing definitions and explanations,
and remove any assumptions or ‘jargon’, and devised a new approach to lead students into pointers with
minimal confusion and debugging difficulties. I spent a great deal of time with students after hours to
learn more about the difficulties confronting them, and used this knowledge to improve the course
organization and instructional materials.

With instructor Vana Doufexi, we chose a newer, better book for CS110, streamlined the project
requirements, and removed linkages between project stages. In the 3rd year, I guided an undergraduate
student project to develop an OpenGL-based replacement for the old CS110 drawing library. The
new library is self-contained, copiously commented and well explained. It greatly reduced CS110
students’ difficulties in starting their projects, improved their performance, provided additional
instructional material on organizing programs into modules, and enabled instructors to easily extend the
library as needed. I also adopted this library for use in the first project of CS351, with very favorable
comments from students; these students can make pictures in the first week of class.

 3

As my CTEC scores and comments will show, I have built a reputation for lowering entry barriers to
computer science, attracting high attendance to my CS110 sections, equalizing the numbers of men and
women students. I have tried to ‘humanize’ the topic area with humor, clarity, tools, and practical
strategies everyone can use. I work to bolster student confidence in their abilities, to realize that with
persistence they can tackle any topic; nothing is out of reach, and to teach genuinely applicable skills.

Goals and Plans
With the unexpected departure of both Ben Watson (2005) and Bruce Gooch (2006), I am fortunate to
be well-prepared for both of our core graphics courses (CS351,CS352), continuing the strong EECS
offerings in this area. I would also like to teach a practical course on computational photography once
we regain another graphics faculty member to help with our existing courses. In addition, over the next
year I would like to prepare for a major change in CS110, shifting instruction from the C programming
language (with preparations for C++) to instruction in Python. As a more modern, weakly-typed
language, Python is much more forgiving for novice programmers, much more appropriate for teaching
object-oriented problem-solving. Python is an open-source project; it is well documented, well-
supported, platform independent, links easily to C, C++, FORTRAN and JAVA libraries, and includes a
simple and well-designed development environment that encourages student experimentation. CS
faculty discussed such a move last year, with widespread positive opinions.

With the EECS merger, I also see great opportunities to strengthen our curriculum by more closely
integrating coursework for graphics (Tumblin), audio and music (Pardo), the Animate Arts program
(Horswill), computer vision (Wu) and image- and signal-processing (Pappas, Katsaggelos). We share
many instructional sub-topics (e.g. Fourier Transforms, wavelets, convolution, edge-finding, projective
geometry, color science, etc.), and we might all benefit from some shared instruction on these topics.

 4

	Essential Approaches:
	Accomplishments:
	Goals and Plans

