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Abstract
We present a new, single-pass nonlinear filter for edge-preserving smoothing and visual detail removal for N
dimensional signals in computer graphics, image processing and computer vision applications. Built from two
modified forms of Tomasi and Manduchi’s bilateral filter, the new “trilateral” filter smoothes signals towards
a sharply-bounded, piecewise-linear approximation. Unlike bilateral filters or anisotropic diffusion methods that
smooth towards piecewise constant solutions, the trilateral filter provides stronger noise reduction and better outlier
rejection in high-gradient regions, and it mimics the edge-limited smoothing behavior of shock-forming PDEs by
region finding with a fast min-max stack. Yet the trilateral filter requires only one user-set parameter, filters an
input signal in a single pass, and does not use an iterative solver as required by most PDE methods. Like the
bilateral filter, the trilateral filter easily extends to N-dimensional signals, yet it also offers better performance
for many visual applications including appearance-preserving contrast reduction problems for digital photography
and denoising polygonal meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tion: Display Algorithms; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling: Geometric
algorithms, languages, and systems

1. Introduction and Related Work

Despite decades of widespread interest in the problem
5 � 6 � 8 � 11 � 18 � 23 � 24 � 25 � 31 � 33 � 35, simple and robust edge-preserving
smoothing of visual signals has proven elusive, because the
terms are ill-defined and somewhat contradictory. Edges are
perceived discontinuities that are not always matched to a re-
liable mathematical discontinuity. In the past six years, sev-
eral edge-preserving smoothing methods have addressed the
stubborn problem of visual appearance-preserving contrast
reduction 2 � 8 � 10 � 24 � 33. The filter described in this paper was
developed for this task, but we will show that it may have
broader uses such as de-noising higher dimensional data and
3D meshes.

Contrast reduction, and the closely-related “tone map-
ping” problem long known in photography and printing, is
increasingly important because the usable contrast abilities
of print and electronic displays remains small, typically be-
tween about 10:1 to 30:1, but many interesting scenes con-
tain far greater contrasts such as 11,000:1 in Figure 1. Scenes
depicted in Figures 1 and 18 are usually impossible to pho-
tograph well conventionally, because no single exposure set-
ting for a camera can capture all the visible details in both

the brightest and darkest areas. As explained in a general
framework for tonemapping by Tumblin and Rushmeier 32,
a tone-mapped image should express exactly what a human
observer would see in the original scene, including glare,
afterimages, floaters, and all other human visual flaws and
effects. They offered an early film-like solution, and other
better methods soon followed; see 8 � 18 for a detailed sum-
mary. We will not address perception, but only focus on the
task of contrast reduction that preserves as much scene detail
as possible without introducing objectionable artifacts.

Now that photography of even the most extreme “high dy-
namic range” (HDR) or high contrast scenes is now yield-
ing to multiple-exposure image capture methods 7 (used for
Figure 1) and novel cameras 19, the problem is more ur-
gent; these new images are not directly displayable without
loss of many visually important details. High contrast im-
age display is difficult because often no one-to-one mapping
of scene to display intensities is satisfactory. Photographic
scaling and contrast compression (e.g. Iout

� M � Iγ
in for γ � 1

and 0 � M � 1) can fail because compressing large contrasts
enough to match the display devices will also compress
small contrasts to invisibility. Several early tone-mapping-
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Figure 2: Trilateral filtering can restore a noise corrupted mesh in a single pass. Middle image shows additive Gaussian noise
with σ � 1 � 5th mean edge length.

Figure 1: Low contrast image (20:1) made with the trilateral fil-
ter from a high contrast image (11,000:1). Small images show the
original scene radiances progressively scaled by factors of 10.

γ

Figure 3: Contrast reduction method based on edge-preserving
filters.

related papers 8 � 18 � 26 reduced contrasts by compressing only
the image components selected by one or more low pass fil-
ters, but this approach can easily cause strong halo-like arti-
facts. However, recent papers by Ashikhmin 2 and Reinhard
et al. 24 have largely overcome these drawbacks by selecting
the best filter diameter for each pixel from an image pyra-
mid.

Many other published detail-preserving contrast reduc-
tion methods use some form of edge-preserving smooth-
ing 8 � 10 � 18 � 24 � 33 to separate the input image into compressible
and incompressible contrast components, as shown in Fig-

ure 3. We also follow this approach. This frequently recur-
ring contrast reduction scheme in Figure 3 is homomorphic;
it filters the logarithm of intensity as Stockham did 28, using
a “detail removing filter” of some sort to smooth away the
small and complex variations presumably due to reflectance
changes. The large simplified illumination-related filter out-
put “Base” is compressed, usually by a scale factor γ (and
sometimes offset by a scale factor log � M � ), and then added
back to the complex details that the filter removed. Conver-
sion from logarithmic back to a linear signal produces the
displayed image result. A few papers such as 33 extended this
idea by using multiple filters to refine compression amounts.

The success of the approach in Figure 3 depends entirely
on the design of the “detail-removing filter.” If the filter’s
smoothing is incomplete, the “Base” signal may destroy
some important scene details due to severe contrast com-
pression by factor γ. Worse, if the filter blurs or distorts
its illumination-like output even slightly, then these distor-
tions will escape compression as part of the “Details” sig-
nal. These errors can cause strange halo-like artifacts in the
result, especially near specular highlights or in broad but
strongly shaded regions such as the sky near the tree line
in Figure 1. Entirely avoiding both errors continues to elude
most published methods.

With few exceptions, edge-preserving filters useful for
contrast reduction fall into two broad classes of (a) itera-
tive solvers and (b) nonlinear filters. Iterative solver meth-
ods gradually and repeatedly modify an initial image Iin to-
wards a final “infinite time” image I∞ guided by a discretized
partial differential equation (PDE). Research in scale-space
methods using heat-flow PDEs led to anisotropic diffusion
PDEs 23 that combine smoothing and edge sharpening into a
single iterative process. It rapidly forms sharp, fixed shocks
at edges, and gradually smoothes between them by diffus-
ing towards a piecewise-constant I∞ result. However, this
method forms strong, spurious step-like shocks across any
large high gradient region 35 � 33, such as the back-lit cirrus
clouds in Figure 1. To avoid this, third order curvature flow
PDEs such as LCIS 33 smooth towards piecewise minimum-
curvature solutions, and instead form shocks as discontinu-
ous gradients rather than intensities. Though its results are
appealing, LCIS smoothing is slow and its best published
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results combine multiple LCIS images using as many as ten
hand-selected parameters.

Nonlinear filter approaches are at least as old as Land’s
classic Retinex work, continued with Chiu and Shirley’s 8

early work, and were recently advanced by an intriguing se-
ries of papers by Black et al. 5 � 6, Tomasi and Manduchi 31

and Durand and Dorsey 10. Black et al. 6 showed equivalence
or strong parallels between iterative robust statistical meth-
ods and anisotropic diffusion 23. Soon afterwards, Tomasi
and Manduchi introduced the bilateral filter 31. This simple,
fast and elegant nonlinear filter performs good-quality edge-
preserving smoothing in a single pass, and produces PDE-
like results without an iterative solver or instability risks.

Unlike the iterative solvers, nonlinear filter methods com-
pute each output pixel separately, as a position-dependent
function of input pixels in a local neighborhood. Derivations
by Barash 4, Elad 11 and confirmed by Durand and Dorsey 10

show that bilateral filtering is equivalent both to a single it-
eration of a discrete version of anisotropic diffusion and to
several robust estimation methods. Durand and Dorsey 10

then demonstrated the value of the bilateral filter for con-
trast reduction, and used Fourifig:hdrer transform techniques
to greatly accelerate it. However, the bilateral filter shares
some of the drawbacks of anisotropic diffusion for contrast
reduction.

In a different approach to contrast reduction, Fattal et
al. 12 compressed the magnitude of the large image gradients
that are responsible for its high contrasts, then iteratively
solved a Poisson equation to find an image that best fits the
compressed gradients in the least-squares sense. Their fast
solver converges more quickly, requires fewer parameters,
and avoids the often excessively ‘busy‘ or noisy appearance
of the LCIS method. All of these methods have guided our
new work.

The trilateral filter is a substantially improved “detail-
removing filter” for Figure 3 because it:� better approximates scene illumination as a sharply-

bounded, piecewise smooth signal with locally constant
gradient,� works in one pass, without an iterative PDE solver,� forms sharp boundaries and corners much like shock
forming PDEs,� self-adjusts to the image, requiring one user-supplied pa-
rameter,� extends easily to N-dimensional signals, both discrete and
continuous-valued.

Polygonal mesh smoothing methods also apply nonlin-
ear filtering techniques and iterative PDEs and were origi-
nally motivated by the problem of smoothing large irregular
polygonal meshes of arbitrary topology 15 � 17 � 27 (see 30 for an
excellent survey). Diffusion and curvature flow PDEs 3 � 9 re-
placed initial Laplacian smoothing methods 27 and overcame
its inherent mesh shrinkage problem. Tasdizen et al. 29 used a

	

Figure 4: Unilateral, Bilateral and Trilateral filter windows.

variational strategy to filter the surface normals instead of the
point positions on the mesh. Their mesh smoothing method
follows a 4-th order gradient-descent-based PDE.

Several recent papers used non-iterative nonlinear filters
for denoising meshes, but their quality depends on how ef-
fectively the non-linear filter can emulate the behavior of
complicated higher-order edge preserving PDEs. Peng et al
. 21 and Alexa 1 have used Weiner filters for smoothing 3D
meshes. Jones et al. 16 presented a two-pass approach that
smoothes the face normals with a low-pass filter and then
bilaterally smoothes the point positions in the mesh model
using corrected normal information. Fleishman et al. 14 have
also used the bilateral filter for smoothing the vertex loca-
tions of a 3D mesh model. We build on these methods to
apply trilateral filters to meshes.

2. Filter Preliminaries

Linear and nonlinear filters make an output signal Iout by
combining together neighboring parts of an input signal Iin
in interesting and useful ways. The filters in this paper make
weighted sums of neighboring values, but the weights and
the neighborhoods may vary. Each filter described below is
valid for N-dimensional inputs, but we will use 1-D and 2-D
illustrations for clarity.

We begin with the linear “Finite Impulse Response”(FIR)
or “unilateral” filter of Figure 4(a) to define our terms. The
value of the filtered signal Iout at position x � � x 
 y 
��
�
� � is
the integral of neighboring Iin values weighted by a filter
kernel c ��� , or a weighted sum of nearby pixels for discrete
input data. The offset vector ζ measures position in a local
neighborhood or “domain” around x, and the domain kernel
function c ��� provides a position-dependent scalar weight for
each point’s contribution to the output:

Iout � x � ��� ∞

∞
Iin � x � ζ � c � ζ � dζ (1)

The domain kernel c ��� may be any function, but we use the
Gaussian function with variance σc for simplicity. Only the
Iin points near x where ζ is small will receive a large weight,
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Figure 5: Given a noisy piecewise linear signal (a), the bilat-
eral filter blunts sharp corners (1b) and smoothes high gradient re-
gions poorly (2b); the trilateral filter both sharpens corners (1c) and
smoothes high gradient regions well (2c).

and all points outside this “filter window,” marked by a hor-
izontal line in Figure 4(a), will have little effect on Iout � x � .
Gaussian filter c ��� removes details well, but also smoothes
across the edges we wish to preserve.

Tomasi and Manduchi’s bilateral filter 31 offers much bet-
ter edge-preserving smoothing. As illustrated in Figure 4(b),
it expands the filter window of domain c ��� into a sec-
ond dimension by multiplying with a “range” filter s ��� that
weights neighborhood values by their intensity difference
from Iin � x � . If s ��� is another Gaussian function with variance
σs, then neighborhood Iin points with values nearly equal
to Iin � x � receive the highest s ��� weight, but “outlier” points
with greatly different values receive s ��� weights near zero.
Only the input points within the rectangular filter window
shown in Figure 4(b) can strongly affect the output value
Iout � x � :

Iout � x � � 1
k � x � � ∞

∞
Iin � x � ζ � c � ζ � s � Iin � x � ζ ��� Iin � x ��� dζ

(2)
(Note underlined portions of Equations 2, 3 match). To en-
sure bilaterally filtered outputs are the average of similarly-
valued nearby pixels, we normalize the neighborhood
weights by k � x � :

k � x � � � ∞

∞
c � ζ � s � Iin � x � ζ ��� Iin � x ��� dζ � (3)

Bilateral filters preserve most step-like edge features in Iin
that are larger than the range variance σs because the fil-
ter window is not tall enough to include both the upper
and lower portions of the step. However, the filter has se-
rious drawbacks as a visual detail-removing filter because:
(1) bilateral filters smooth across sharp changes in gradients,
blunting or blurring ramp edges and valley- or ridge-like fea-
tures (arrow 1, Fig. 5(b)), (2) high-gradient or high-curvature
regions are poorly smoothed because most nearby Iin values
are outliers that miss the filter window (arrow 2, Fig. 5(b)),
and (3) wide bilateral filter windows may include disjoint
domains on either side of adjacent high gradient regions as
in Fig. 5 (arrow 3, Fig. 5(b)).

3. The Trilateral Filter

The new trilateral filter presented here combines two modi-
fied bilateral filters with a novel image-stack scheme for fast
region-finding to avoid these problems. Its novel contribu-
tions are:� Tilting:Its filter window is skewed or “tilted” by the

bilaterally-smoothed image gradient vector Gθ in Fig-
ure 4(c), to track high-gradient regions (Section 3.1).� Adaptive Region-Growing: The local neighborhood or
“domain” automatically adapts to local image features to
smooth the largest possible region with similar smoothed
gradient values (Section 3.2).� One Parameter: Though the trilateral filter uses 7 internal
parameters (σc, σcθ, σr , σrθ, fθ, R, β), all can be derived
from a single user-supplied value σcθ(Section 3.3).

3.1. Tilting

As Figure 4(c) shows, the trilateral filter tilts its filter window
by angle(s) θ, pivoting around the center point at � x 
 I � x ��� to
better fit the signal and widen the usable domain. Its tilting
vector Gθ � x � should average together closely related neigh-
borhood gradients, but should ignore nearby strongly dis-
similar gradient outliers. Because bilateral filters are well
suited to this task, we modify them to filter input image gra-
dients:

Gθ � x � � 1
kθ � x � �

∞

∞
∇Iin � x � ζ � c � ζ � s ��� ∇Iin � x � ζ ��� ∇Iin � x ����� dζ

(4)
(underlined portions of Equations 4. 5 match)

kθ � x � � � ∞

∞
c � ζ � s ��� ∇Iin � x � ζ ��� ∇Iin � x ����� dζ � (5)

We use forward differences instead of central differences
to minimize the smoothing effect for approximating gra-
dients in discrete images: ∇Iin � m 
 n ����� Iin � m � 1 
 n ���
Iin � m 
 n ��
 Iin � m 
 n � 1 ��� Iin � m 
 n ��� .

Tilting the filter window in Figure 4(c) also confuses its
definition, because the domain filter c ��� and range filter s ���
are no longer orthogonal. The solution is simple; rather than
computing a range weight s ��� for neighboring I � x � ζ � by
measuring its closeness to the center point value I � x � , instead
we measure its closeness to a plane through I � x � , which acts
as a “centerline” for the filter window of Figure 4c. Formally,
this plane of intensity values P � x 
 ζ � defines the filter’s in-
put range as the first-order Taylor-Series approximation of
neighborhood point values around Iin � x � . The plane orienta-
tion is set by the smoothed gradient vector Gθ instead of the
ordinary gradient ∇Iin:

P � x 
 ζ � � Iin � x ��� Gθ � ζ (6)

Note that x, Gθ and ζ are all N-dimensional vectors. To com-
pute trilateral filter output values Iout � x � , we subtract scalar
value P from neighborhood Iin values to find a local de-
tail signal I∆ � x 
 ζ � . Instead of filtering the input signal as in
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Figure 6: We find neighborhood fθ from a stack of min-max
gradient images. Each pixel in level K holds the min and
max values in a � 2K � 1 �! "� 2K � 1 � size neighborhood of
the level 0 image.

Eqns. 2, 3 we apply the c ��� and s ��� weighting functions to
I∆ � ζ � and add the result to Iin � x � to form Iout � x � . The neigh-
borhood used for each x is further restricted by the binary
function fθ � x 
 ζ � �$# 0 
 1 % explained in next section.

I∆ � x 
 ζ � � Iin � x � ζ �&� P � x 
 ζ � (7)

Iout � x � � Iin � x ��� 1
k∆ � x � �

∞

∞
I∆ � x 
 ζ � c � ζ � s � I∆ � x 
 ζ ��� fθ � x 
 ζ � dζ

(8)
The trilateral filter also normalizes local weights by k∆ � x �
(underlined portions of Equations 7, 8 match):

k∆ � x � � � ∞

∞
c � ζ � s � I∆ � x 
 ζ ��� fθ � x 
 ζ � dζ (9)

3.2. Automatic fθ: Adaptive Neighborhood

Tilting greatly improves smoothing abilities of the trilat-
eral filter in high gradient regions, but also ensures that the
filter window can extend beyond local boundaries into re-
gions of dissimilar gradients. Unless we exclude these re-
gions from the filter window, the trilateral filter will blunt or
blur sharp ridges and corner-like features where the bilater-
ally smoothed gradient Gθ changes abruptly (e.g. arrow 1 in
Figure 5b). Tilting is not enough: we need the “edge-limited
smoothing” effects offered by the shocks (zero conductance
boundaries) that form in anisotropic diffusion 23 or LCIS 33.
Fortunately, the Gθ signal itself contains the solution. The
smooth, approximately piecewise-constant magnitude � Gθ �
forms step-like features at x locations where Iin has ridge and
corner-like transitions. We apply a threshold R to these fea-
tures to form a binary signal fθ � x 
 ζ � used in Equations 8, 9
that limits the smoothed neighborhood to connected regions
x that share similar � Gθ � vectors. “Similar” values are de-
cided by scalar threshold parameter R (see Section 3.3):

fθ � x 
 ζ � �(' 1 if � Gθ � x � ζ ��� Gθ � x ��� � R
0 otherwise � (10)

Searching the neighborhood around x for connected re-
gions of nonzero fθ is expensive. Instead, we approximate
these regions by their largest inscribed square, and we can
find this square by a simple lookup operation in a min-max
image stack. If input data Iin is an image holding N  M pix-
els, the stack is a log2 � N � set of N  M images, each one
called a “level” and numbered upwards from zero, as shown
in Figure 6. Unlike an image pyramid, each image in a stack
is the same N  M size, but effective filter sizes still double
with each successive level. Level 0 pixels hold the original
Gθ � x � vector elements, the level 1 pixel at � m 
 n � holds min
and max values for each Gθ � x � element in the surrounding
3  3 pixels found in level 0 at � m � # 0 
*) 20 %�
 n � # 0 
*) 20 %+� ,
level 2 pixels hold min and max values for the surrounding
3  3 pixels found in level 1 at � m � # 0 
*) 21 %�
 n � # 0 
*) 21 %+� .
Formally, each pixel � m 
 n � in any nonzero level K holds
min and max values for the 3  3 surrounding pixels found
in level � K � 1 � at � m � # 0 
*) 2k , 1 %*
 n � # 0 
*) 2k , 1 %-� . Because
these 3  3 neighborhoods overlap, level K pixels each hold
min and max values for � 2K � 1 � by � 2K � 1 � surrounding
pixels of level 0.

To find the connected region of nonzero fθ around x, we
traverse the image stack at pixel x to find the highest level
whose min/max values are within Gθ � x �.) R. Though we
found it unnecessary, it is possible to iteratively expand this
inscribed-square solution to find the complete connected fθ
region. Starting from the level K pixel � m 
 n � , find adjacent
inscribed squares by testing nearby pixels in adjacent lev-
els. Iteratively test level K ) 1 pixels at � m � # 0 
*) 2K / 1 %�
 n �# 0 
*) 2K / 1 %-� to enlarge the connected set of qualified stack
pixels that describe the region. Using more than one min-
max image stack pixel may prove useful to some applica-
tions that need better fθ approximations near important but
noisy diagonal edges.

3.3. Self-Adjusting Parameters

Avoiding hand-tuned parameters improves the usefulness
and generality of the trilateral filter, and it requires one user-
specified parameter: (σcθ), the neighborhood size used for
bilateral gradient smoothing. More intuitively, σcθ sets the
typical size of separately-smoothed regions in the output im-
age. The trilateral filter’s single parameter offers improve-
ment over both the bilateral filter 31 with 3 parameters (the
domain variance, σc, the range variance σs and the width of
the filter kernel f ) and LCIS 33 with about 3 sets of 3 param-
eters each (timestep, edginess factor g and number of itera-
tions). Though the trilateral filter has 7 internal parameters,
values for all but one are computed automatically.

The trilateral filter uses two bilateral stages and a min-
max stack. The parameter-setting procedure begins with the
user-supplied σcθ value; large σcθ expands the spatial ex-
tent, but may blur or blunt boundaries where only the gra-
dient changes. First, we use σcθ as the radius of a circular
neighborhood around x in the input image. We find the aver-
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Figure 7: Bilateral smoothing can blunt sharp corners and
smoothes high gradient regions poorly. Trilateral filter, like
LCIS, drives the final signal towards a piecewise linear ap-
proximation.

Figure 8: Small adjacent high gradient image regions near the
lamp-base top, wall corner and bulb cause difficulties for many pre-
vious methods. Image excerpt from a larger bulb scene, courtesy of
Peter Shirley, University of Utah.

age gradient Gavg in this neighborhood for each x, and then
use the min and max Gavg as an estimate of overall gradient
variability. This variability defines outliers for gradients that
will be rejected by σsθ:

σsθ
� β ��� max � Gavg � x ����� min � Gavg � x ������� (11)

Large σsθ improves noise reduction, but also reduces outlier
rejection, and may blur weaker boundaries of slight intensity
changes. Unfortunately, β is a small fraction we set empir-
ically to 0 � 15; values between 0 � 1 and 0 � 2 always worked
best. Armed with σcθ and σsθ, we then compute the min-
max stack of Section 3.2. We set the globally-applied region-
finding threshold by R � σsθ to ensure region size fθ does
not include gradient outliers excluded from the bilateral fil-
tering.

Finally, we compute the trilateral filter output from Equa-
tions 7,8, and 9. Domain filtering for Iin uses the same neigh-
borhood size applied earlier for gradient filtering: σc

� σcθ.
The range filtering variance is more interesting, because the
trilateral filter smoothes detail I∆ measured from the plane P
of Equation 6. The amplitude of the detail signal is closely
related to the variance of the gradients or the difference
between the smoothed gradient Gθ and the actual gradi-
ents. Thus we can re-use our definition for gradient outliers:
σs
� σsθ. These simple rules have proven surprisingly robust

for a wide variety of signal classes, including images and 3D
geometric meshes.
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Figure 9: Despite high contrasts and strongly varying gradients,
the trilateral filter preserves details that escape many previous meth-
ods. Note the ring-like specular highlight (1) that often escapes con-
trast compression. Only the trilateral filter and gradient attenua-
tion 12 methods capture the subtle gold medallions (2) and radial
lines near the skylight. Image excerpt from larger Stanford Church
scene, courtesy of Paul Debevec, University of Southern California.

4. Results

In this section, we apply the trilateral filter to the tasks of dis-
playing high contrast images and de-noising 3D mesh mod-
els.

4.1. HDR Tone Mapping or Contrast Reduction

The trilateral filter offers several notable improvements
when used for high dynamic range (HDR) tone mapping or
contrast reduction. We collected several HDR source images
from previous tone-mapping papers and applied the trilateral
filter of Equations 7, 8, 9 in the “base/detail” method shown
in Figure 3. In side-by-side comparisons with five other re-
cently published methods 2 � 10 � 12 � 24 � 33 the differences are in-
structive.
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Figure 10: Nonuniform gradient compression 12 can some-
times lead to brightness anomalies. Image courtesy of Shree Nayar,
Columbia University.

Figure 11: Trilateral filter automatically selects all but one pa-
rameter; adjusting for good results is relatively easy. Images cour-
tesy of Dani Lischinski, Hebrew University, Israel.

Figure 1, 8, 10 and others show that the trilateral filter
is particularly good at edge-preserving smoothing in nar-
row ramp-like high gradient regions of an image, such as
the shading at the top of the lamp base. Here, as in Fig-
ure 5(arrow 3), the bilateral filter can span different high
gradient regions and cause strange, strip-like bipolar halos.
Though Ashikhmin’s method 2 is more successful, it blurs
the lamp slightly and makes the lampshade and wall bound-
aries indistinct. Conversely, photographic tone mapping by
Reinhard et al. 24 keeps the image sharp, but surrounds the
bare lightbulb with a thin black halo.

Like LCIS 33, the trilateral filter smoothes towards a piece-
wise constant gradient or low curvature result, and in most
Figures (e.g. 9, 10, 13) trilateral results more closely re-
semble LCIS than any other. But LCIS works by iterative
smoothing, and require many hand-selected parameters, and
poor choices can lead users to washed-out, overly busy re-
sults as in Figure 11, but the single-parameter trilateral filter
easily provides more pleasing results.

As Figure 5(arrow 1) shows, tilting and adaptive neigh-
borhoods help trilateral filters preserve large, sharp gradi-
ent changes. Smoothing across these changes causes a dark

Figure 12: Halo artifacts from bilateral filtering 10 at the top
of the sofa and chair from are absent in the other methods. Image
courtesy of Simon Crone, Perth, Australia.

halo at the chair top in the bilateral results in Figure 12.
Adaptive neighborhoods help the trilateral filter smooth well
even near very high-contrast features, enabling preservation
of very subtle medallions and radial lines in the decorative
rings nearest the skylight border in Figure 9 at area 2. Even
the gradient attenuation method 12 results loses some de-
tails here. As in Figure 5, bilateral filtering 10 blunts the
sharp specular highlights in an outer ring, permitting uncom-
pressed brilliance in the result (“1” in Figure 9). LCIS 33

over-emphasizes some details near the skylight and some-
how lost to the subtle golden medallions revealed by trilat-
eral filter (at “2” in Figure 9).

The trilateral filter also avoids blooming effects that en-
large, blur or brighten high gradient neighborhoods, such as
the inner ring of the skylight for Figure 9. Figure 10 seems
to show some blooming-like brightness anomalies due to
nonuniform compression of image gradients 12 that are not
reproduced by the trilateral filter. Figure 13 demonstrates
that blooming (at arrow) for extremely high contrast spec-
ular reflections can be difficult to avoid in the bilateral fil-
ter 10, but both the trilateral filter and gradient attenuation
method 12 nearly match the blooming suppression of the
other three methods.

Table 4.1 shows the computation time and the half of the
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Figure 13: Compared to bilateral filter 10, trilateral filtering lim-
its blooming of sharp specular highlights and its performance is
similar to the gradient attenuation 12 method.

Figure# : Size Bilateral Trilateral

fθ Time(s) fθ Time(s)

8: 400  300 10 13.13 6.67 21.2
13: 1130  750 10 110.1 5.4 179.3

9: 512  768 10 57.2 4.95 89.1
11: 1024  768 10 100.5 5.9 160.1
12: 750  485 10 51.4 6.6 90.2

Table 1: Running time and average size of adaptive neigh-
borhood (kernel radius fθ in pixels) for trilateral filter.

adaptive filter kernel fθ for the bilateral and the trilateral
filter. Theoretically, the trilateral filter should take roughly
twice the time of bilateral filter as it is a two-step bilateral
filtering procedure. In practice, the running time for the tri-
lateral filter is a little less, due to variable neighborhood size
fθ. In Table 4.1, the filter window half-width fθ is constant
for the bilateral filter for all the images. For the trilateral fil-
ter fθ varies with the scene details and the average filter win-
dow half-width is often smaller than the bilateral filter value.
All running times measure non-optimized code for both the
bilateral and the trilateral filter. The Fourier transform and
sub-sampling based acceleration techniques devised by Du-
rand and Dorsey 10 should greatly reduce the running times
for both filters.

4.2. Mesh Smoothing

The trilateral filter can also perform 3D mesh smoothing.
Though several mesh smoothing approaches are possible,
we chose a two-step process: first, trilateral normal filtering
(Section 4.2.1) computes the new vertex normals NVout and
defines a “filter plane” PV � XV 
 ζ � for each. Then trilateral
vertex filtering (Section 4.2.2) smoothes together distances
from the filter plane to mesh faces in its neighborhood, and
we use this distance to find a new vertex position XVout along
the new mesh normal direction.

Note that our method for smoothing each mesh vertex V
requires both its position XV

� � X 
 Y 
 Z � and surface nor-
mal vector NV . If normals are unknown, then NV is typically
computed as the area weighted average of normals for inci-
dent faces of V 14.

4.2.1. Trilateral Normal Filtering

To find new vertex normals, begin by bilaterally filtering
the given vertex normals NV with Equations 4 and 5. Sim-
ply substitute normal vectors NV for gradient vectors ∇Iin,
use the domain filter c ��� to weight the contribution of each
nearby vertex’s normal according to its 3D distance from
vertex V , and let the range filter s ��� assign weights that will
reject outlier directions for normals. The resulting bilaterally
smoothed normals NθV allow us to find a connected neigh-
borhood of nearby mesh faces with similar normals.

For trilateral normal filtering, we refer to each mesh face
near vertex V by the name ζF , and its face normal and face
center point is XζF and NζF respectively. As before, func-
tion fθ ��� defines the adaptive neighborhood around vertex
V , and its limited extent ensures that the trilateral filter win-
dow will not cross sharp corners of the mesh during filter-
ing. Function fθ � V 
 ζF � is 1 for all connected neighborhood
faces around V that share normal vectors similar to NθV , and
is otherwise zero. Breadth-first search implemented as a re-
gion growing algorithm finds this connected neighborhood.
The traversal starts at vertex V and terminates when all sur-
rounding face normals NζF differ significantly from the ver-
tex normal NθV :

fθ � V 
 ζF � �0' 1 if � NθV � NζF � � R
0 otherwise � (12)

The bilateral filtered normal NθV also sets the filter plane for
each vertex V . Analogous to the ‘centerline’ in Section 3.1,
planeeq:trilat2 PV � XV 
 ζ � passes through vertex V and is per-
pendicular to the bilaterally smoothed normal NθV . Unlike
the plane P in Equation 6 which provides a range value for
a given location x, the plane PV � XV ζ � is defined only in the
3D domain, and the detail signal is set only by the distance
to that plane.

PV � XV 
 ζ � satis f ies � ζ � XV ��� NθV
� 0 (13)

We compute the trilaterally filtered normal NVout for vertex
V from the filter plane PV and the normals of neighboring
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Figure 14: The bilaterally filtered normal NθV defines a
center plane PV � XV 
 ζ � through each vertex V . The adaptive
region fθ selects nearby faces with similar normals. Dis-
tance from each face center XζF to the plane defines the
detailed distance signal X∆ � ζF � .

Original Model     Noisy Model     Smoothed Model

Figure 15: In a single pass, a trilateral filter can remove
most visible corruptions caused by additive Gaussian noise
in both vertex positions and normals. Some small high cur-
vature creases were lost due to smoothing in the hair, eyelids
and lips.

faces selected by Fθ. The filter smoothes a “normal detail
signal” N∆ � ζF � made from differences with neighborhood
face normals NζF around the vertex V :

N∆ � ζF � � NθV � NζF (14)

The domain filter cN � ζF � is a Gaussian weighting function
that falls towards zero as the 3D distance � XV � XζF � from
vertex to face center increases. The range filter sN � N∆ � ζF ���
gives low weights to outlier face normal directions NζF that
are drastically different from NθV . Echoing Equation 8, the
trilaterally filtered normal NVout is then:

NVout
� NθV � (15)

1
kN � ζF � ∑

F 2 ζF

N∆ � ζF � cN � ζF � sN � N∆ � ζF ��� fθ � V 
 ζF � 

where the weighting coefficients of the trilateral filter are
normalized by kN � ζF � :

kN � ζF � � ∑
F 2 ζF

cN � ζF � sN � N∆ � ζF ��� fθ � V 
 ζF � (16)

4.2.2. Vertex Filtering

Next, for each mesh vertex V we find a new vertex posi-
tion XVout by additional trilateral filtering using results from
the previous section. Vertex filtering re-uses the same adap-
tive neighborhood fθ and the same filter plane PV , but com-
putes a scalar distance for each vertex. Displacing the ver-
tex by this distance in the new normal direction NVout pro-
duces the new vertex position XVout . The vertex filter finds
a domain- and range-weighted average of the “distance de-
tail signal” X∆ � ζF � that measures the distance from the filter
plane PV � XV 
 ζ � to each face center XζF in the fθ neighbor-
hood around. Formally, define the point pζF as the projec-
tion of the face center point XζF onto the plane PV � XV 
 ζ � ,
as shown in Figure 14, and then define the distance detail
signal X∆ � ζF � as the 3D distance between pζF and the face
center point XζF :

X∆ � ζF � � � pζF � XζF � (17)

To smooth X∆ properly, the domain filter cV � pζF � is a Gaus-
sian weighting function that falls towards zero as the 2D
distance � XV � pζF � from vertex to point p increases. The
range filter sV � X∆ � ζF ��� is a Gaussian weighting that rejects
outlier face centers XζF that are too far away from the plane
PV � XV 
 ζ � . We use the same fθ � V 
 ζF � as before in Equa-
tions 8, 9. Each new output vertex position is:

XVout
� XV � (18)

NVout

kV � ζF � ∑
F 2 ζF

X∆ � ζF � cV � pζF � sV � X∆ � ζF ��� fθ � V 
 ζF �
The weighting term is normalized by

kV � ζF � � ∑
F 2 ζF

cV � pζF � sV � X∆ � ζF ��� fθ � V 
 ζF � (19)

4.2.3. Mesh Smoothing Results

Figure 2 shows an artificially corrupted dragon face model
before and after trilateral smoothing. Trilateral filter retains
most of the sharp curvatures in the face of the dragon. Fig-
ure 15 shows the effect of trilateral smoothing on the noisy
David input model. Leaving aside a little blurring in the eye-
lid and hair of the input David model, our filter preserves
sharp features throughout the model. Figure 16 compares the
results for mesh denoising using trilateral filter with two re-
cent mesh smoothing algorithms 16 � 14. All the three methods
efficiently smoothes the noisy input mesh, though the result
of Fleishman et al.’s algorithm 14 is comparable in quality
to the trilateral filter perhaps because both the algorithms fil-
ter the tangent plane distance for neighborhood points. Fig-
ure 17 shows the results of smoothing a different input model
for the trilateral filter and the modified bilateral filter pro-
posed by Jones et al. 16. The performance of both the algo-
rithms are roughly similar, but some minute differences are
visible around the ear and mouth outlines.
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Figure 16: All the three algorithms are effective for denois-
ing the noisy Fandisk model, but the trilateral filter result is
closely matched to Fleishman et al.’s 14 result.

Figure 17: Jones et al.’s 16 smoothing algorithm and trilat-
eral filter produce similar results except for small differences
at the edges of the dog’s ears and lips.

5. Conclusions and Future Work

The trilateral filter offers new edge-preserving detail-
remover that smoothes input towards a piecewise constant
gradient approximation. The filter requires only one user-
specified parameter and is applicable to N-dimensional data.
We demonstrated its usefulness for different applications
like high contrast image display and mesh smoothing. The
filter is also “embarrassingly parallel” and may prove suit-
able for fast hardware implementation.

Trilateral filter’s ability to separate details from the noisy
original image and to predict gradient discontinuities in spa-
tial domain with sub-pixel accuracy might prove useful in
image and photo-editing operations 20 � 22. The filter might
also benefit from a more pricipled justification for the con-
stant β in Eqn. 11. The trilateral filter extended to the spatio-
temporal domain can also predict occlusions in temporal do-
main and this feature has potential for various video-based-
rendering applications 13 � 34.
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Figure 18: Examples of high dynamic range radiance map compression and mesh smoothing using trilateral filter. (Top Row,
from left): Stanford Memorial Church, courtesy of Paul Debevec, Univ. Southern California. Tree on a Foggy Night, Washington
DC Cathedral, courtesy of Max Lyons. (Middle Row): Synagogue, courtesy of Dani Lischinski, Hebrew University, Israel,
Burswood Hotel Suite Refurbishment, c

3
1995 Simon Crone. (Bottom Row): Noisy Venus model and its smoothed version using

trilateral filter. c
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