
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

Bixels: Picture Samples with Sharp Embedded Boundaries

Jack Tumblin and Prasun Choudhury

Department of Computer Science, Northwestern University, Evanston, IL, USA.

Abstract
Pixels store a digital image as a grid of point samples that can reconstructa limited-bandwidth continuous 2-D
source image. Although convenient for anti-aliased display, these bandwidth limits irreversibly discard important
visual boundary information that is difficult or impossible to accurately recover from pixels alone. We propose
bixels instead: they also store a digital image as a grid of point samples, buteach sample keeps8 extra bits to set
embedded geometric boundaries that are infinitely sharp, more accurately placed, and directly machine-readable.
Bixels represent images as piecewise-continuous, with discontinuous intensities and gradients at boundaries that
form planar graphs. They reversibly combine vector and raster image features, decouple boundary sharpness from
the number of samples used to store them, and do not mix unrelated but adjacent image contents, e.g blue sky and
green leaf.
Bixels are meant to be compatible with pixels. A bixel is a image sample point withan 8 bit code for local
boundaries. We describe a boundary-switched bilinear filter kernel forbixel reconstruction and pre-filtering to
find bixel samples, a bixels-to-pixels conversion method for display, andan iterative method to combine pixels
and given boundaries to make bixels. We discuss applications in texture synthesis, matting and compositing. We
demonstrate sharpness-preserving enlargement, warping and bixels-to-pixels conversion with example images.

1. Introduction

There is a shortfall between the data we store and the fea-
tures we see in digital pictures. Most commonly, a digital
picture is a grid of pixels that follow classical sampling-
and-reconstruction methods [OS75] to describe a smooth,
continuous-valued 2-D intensity map. Display devices ap-
proximately reproduce this intensity map, and the number
of pixels strictly limits both the image complexity and its
perceived “sharpness”. But visible features are rarely af-
fected by these limits; instead we see both intensity changes
and a critically important set of discontinuities at boundaries
caused by shadows, silhouettes, cracks, glints, outlines and
occlusions in the depicted scene. The human visual system
actively seeks out estimates of these boundaries and their
causes. To better understand a viewed image it will even in-
vent boundaries [Pal99] in regions that seem to contain un-
seen occlusions, (e.g. Kanizsa, Poggendorf illusions), even
when obscured by blurring, noise, or missing pixels.

Although humans find visual boundaries in a just few
glances, no completely accurate method yet exists to com-
pute them from pixels alone (see [Eld99] for an insight-
ful summary). Pixel storage complicates computed boundary

extraction, because anti-aliased pixels hold a weighted aver-
age of local scene values. Complex, ad-hoc corrections such
as “font hinting” help us see visual boundaries better because
pixels ignore boundaries, and can mix together unrelated
scene values that are visually distinct. Reversing this process
is difficult at best, and may be impossible if the boundary
shapes or intensity changes are too complex, as we might
find in an image of evening stars and clouds at sunset, oc-
cluded by the leaves of a distant tree. Such irreversible mix-
ing often complicates processes that rely on boundaries, such
as image compositing, texture synthesis, and texture map-
ping, image inpainting, or merging depth images recorded
from different viewpoints. Good visual boundary estimates
are also critical to many novel non-photorealistic rendering
(NPR) methods [DFRS03], and important for image index-
ing and retrieval. Given their importance to perception and
graphical computing tasks, we believe that visual bound-
aries should be an explicit part of digital images, stored in
machine-readable form to allow computers to more easily
assist us in boundary-related tasks.

Bixels describe sampled digital images with embedded
planar geometric boundaries between samples thatdo not

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

+

(a) (b) (c) (d)

Figure 1: Pixels degrade or discard visual boundaries, but bixels preserve them in machine readable form for enlargement,
compositing, morphing and image-based shape description. Just14×14 bixels can hold many important boundaries, even if
only approximated. Boundary positions and source pixels (a and b); 40X bilinear enlargement ofpixels (c) andbixels (d).
(Image: after Harmon&Julesz,1973)

mix together unrelated scene intensities. Like pixels, bix-
els are arranged in a uniform grid, and each bixel has two
parts: a point sample of a smoothed 2-D image that is only
piecewise-continuous, and a fixed number of additional bits
(usually 8) that specify nearby visual boundaries with sub-
pixel precision. These boundaries connect to form planar
graphs whose nodes and arcs thread between the grid of bixel
sample points, and define infinitely sharp discontinuities in
image intensitiesI and gradients∇I . Note that bixel sam-
ples are not pixel values; they differ from pixels because they
do not mix unrelated colors separated by visual boundaries,
such as the silhouette of a leaf against the sky. The green leaf
bixels contain no blue and the adjacent blue sky bixels con-
tains no green; thus bixels will need anti-aliasing for best
results when converted to pixels for display, but boundary
sharpness will not depend on the density of sample points
as it might with pixels. Instead, we can choose bixel sam-
pling rates that best match the complexity of boundaries and
intensity variations.

While bixels can sometimes store an image more effi-
ciently than pixels, e.g. a simple corporate logo, they are
not intended for image compression; block-transform and
wavelet methods (e.g. JPEG, MPEG) are far more efficient.
Instead, bixels are an attempt to describe important visual
boundaries in a machine-readable form, boundaries that are
ignored in pixel-only formats. As shown in Figure1, bixel
boundaries remain sharp for any amount of enlargement, yet
convert to anti-aliased pixels for display.

Bixels try to straddle the ‘vector/raster’ dichotomy in
computer graphics [Dur02] and now in web documents
[DJ03]. A bixel image can preserve font outlines of letters
that were embedded in images, keep the sharp tips and cor-
ners of arrowheads and boxes machine-readable, and pre-
cisely describe depth discontinuities for image-based mod-
eling and rendering. Bixels can also describe more complex
boundaries in real images such as object silhouettes, self-
occlusion boundaries, shadow edges and shadow maps, and

even express perceived but illusory boundaries in machine-
readable form. Because accurate boundary information is
routinely available during rendering, bixels seem especially
well suited for re-using computer graphics images. Gather-
ing accurate boundaries from photographed scenes remains
an important research challenge, but new work by Raskaret.
al. [RR04], Kwatraet al. [KSE∗03] and others offer promis-
ing approaches to the problem.

2. Related Work

Raster image descriptions of boundaries have appeared be-
fore in the computer graphics and vision literature, but none
we found provided all the features of bixels. Unconnected
line segment samples known asedgelsare commonly used in
image processing for feature detection, but lack connectivity
and sub-pixel accuracy. Marching cubes and related meth-
ods cleverly create closed polygonal meshes to follow iso-
surfaces in sample grids of scalar and vector values [LC87]
without non-manifold boundaries. We found several edge-
directed image interpolation methods (e.g. [SKS97]) that
improve sharpness by making sub-pixel boundary estimates,
but none that can embed boundaries for further use.

The literature for boundary finding from pixels is vast
and diverse, but bixels do not address this problem; they
store boundaries as an intrinsic part of the image they de-
scribe. Early and diverse derivative-estimate methods were
made optimal by Canny [Can86], and led to refined direc-
tional filter bank methods such as the versatile steerable fil-
ters [FA91]. Extensive explorations of scale space enlivened
robust work in diffusion [PM90] and PDE-based methods,
now being refined and greatly expanded by novel level-
set approaches [OF02]. A forward-looking paper by El-
der [Eld99] asked if sharpness-controlled boundaries alone
can express all the important visual content of an image,
and influenced our thinking on bixels. Elder [Eld99] repre-
sented images made solely of oriented edges described by

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

their smoothness and their amplitude, and reconstructed dis-
play images using a Poisson-solver like method. We agree
with Elder’s larger ideas, but attempted a much smaller step.
Our bixel framework retains the sample grid of a pixel-only
image, but adds infinitely-sharp discontinuities.

Even the earliest NPR papers [SALS96] sought visual
boundaries to guide rendering, and the topic remains cen-
tral and active [DFRS03]. Many varieties of stroke-based
methods resolved line-like primitives into anti-aliased pix-
els rather than boundaries, and others labelled mesh edges
in 3D rather than image space for specialized rendering:
see [GG01] for a good overview. But in an early and very
insightful paper, Salisburyet al. [SALS96] also saw the fun-
damental importance of accurate boundary primitives em-
bedded within images, and our work echoes and expands on
several of their ideas.

Visual boundaries received sustained attention in
computer graphics for rendering silhouettes and shad-
ows, from discontinuity meshing for global illumina-
tion [Hec92, LTG92] and piecewise interpolants [SLD92],
to silhouette clipping by Sanderet al. [SGG∗00] and an
innovative solution by Lokovicet al. [LV00] for rendering
extremely numerous complex boundaries such as hair and
fur. Last year Senet al. [SCH03] greatly improved shadow
maps by storing closed, piecewise linear boundaries with
sub-pixel accuracy. Bixels store similar boundaries, but also
permit non-closed boundaries and continuous-valued inten-
sity interpolation of samples between them. In a concurrent
paper published soon [Sen04], Sen uses programmable
shaders to embed boundaries in hardware texture maps in a
manner very similar to bixels.

Last year, Balaet al. [BWG03] improved efficiency for
anti-aliased real-time ray-tracing by using bixel-like geo-
metric boundaries and sparse eye rays to accurately esti-
mate pixel colors. In another concurrent paper [RBW04],
they extend these ideas to texture maps as well. Adapting
Balaet al.’s [BWG03] system to produce bixel outputs ap-
pears straightforward, and would enable re-sizeable display
and use of their work as input for image-based modeling,
improved methods for texture synthesis [KSE∗03, ZZV∗03]
and novel displacement maps [WWT∗03].

Explicit embedded boundaries may also hold promise
for light maps; work by Nget al. [NRH03] on “all fre-
quency lighting” describes sources with arbitrary sharpness
by wavelet coefficient selection; simpler but similar results
might be achieved by controllably smoothing the infinitely
sharp boundaries offered by bixels.

3. Bixel Images Defined

Both bixels and pixels approximate an ideal signal that we
call the “scene” (see Figure2). The scene is boundlessly de-
tailed and perfect, such as the true radiances that a camera
tries to measure, or the true depths sampled by a z-buffer.

Scene
PIXEL

Extract

Boundary

BIXEL
Scene

Smooth

Between

Boundary &

Sample

Bixel

Image

Pixel

Image

Smooth

and

Sample

Figure 2: Pixels mix scene values from both sides of inten-
sity and gradient discontinuities; bixels store the boundary
locations (scissor cuts) and store separately smoothed scene
values from each side.

The visual boundaries stored by bixels approximate ideal
boundaries that separate adjacent but unrelated portions of
the ideal scene, as if the scene signal were an intensity
height-field surface cut by scissors, but otherwise left un-
changed.

The process of making anti-aliased pixels ignores these
scissor cuts. First, it smoothes (pre-filters) the scene to avoid
aliasing, and then finds values at integer(x,y) sample posi-
tions in the smoothed scene to store as pixels. (note: even
the A-buffer [Car84] and other super-sampling schemes are
approximations of such smoothing) Due to this smoothing,
each pixel is a weighted average of nearby scene values,
even if some values were separated by a visually important
boundary or “scissor cut”. As shown in Figure2, pixel im-
age creation degrades ridge-like and step-like features from
the scene, producing a set of blunted sample values that can
differ noticeably from bixels.

“Scissor cuts” strongly affect bixel-making. Unlike pix-
els, a bixel image stores planar graphs of boundaries that
follow “scissor cuts” with sub-pixel precision. Like pixels,
bixels also use integer(x,y) sample positions to take sam-
ple values from a smoothed scene, but the scene smoothing
method is different. Bixel pre-filtering smoothes the surface
on each side of a cut separately, and preserves the separate
scene intensities and local gradients as much as possible,
as described in Section4.1. Ideally, bixel making smoothes
each part of the scene intensities by just enough to allow
alias-free reconstruction. Bixel samples within each area can
then recreate the smoothed area without significant aliasing
or loss of visual detail.

But without further constraints, bixels can define patho-
logical images that are difficult or impossible to reconstruct.

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

For example, a closed loop of boundaries that does not con-
tain at least one integer(x,y) sample position will enclose
an area with no defined intensities. Overly dense or complex
boundaries are troublesome too, such as a many-turn spiral
packed within a square of 4 adjacent pixels. We avoid these
difficulties by defining our terms and imposing a set of rules:

Bixel Sample Values:The bixel image intensity at a sin-
gle sample point. Bixel sample points form a unit grid at
integerx,y positions.

Tiles: Bixel images are easier to describe by dividing the
(x,y) plane into addressable “tiles”. Tiles are unit squares
whose corners meet at the integer(x,y) locations of bixel
sample points. We identify tile corners by letter, in counter-
clockwise (CCW) order:A for the lower left corner, theB
corner is lower right, andC andD ar at the upper right and
left respectively. The integer(x,y) location of itsA corner at
the lower left also gives each tile its unique address.

Boundary Points and Boundary Segments: All the
boundaries described in a bixel image form a set of planar
undirected graphs; boundaries can form loops, but are not
required to have form closed shapes. Graph nodes are called
boundary pointsand are stored within the tiles that contain
them, and the graph arcs areboundary segmentsthat selec-
tively connect together adjacent boundary points. To avoid
ambiguity, three rules limit the complexity and position of
the boundary graphs:

Rule 1: Each tile can contain either one boundary point or
none at all. Each tile’s lower-left corner sample (A) stores the
boundary point position(xp,yp) with fixedM×N-bit preci-
sion, and typicallyM = N = 3 bits, providing an 8×8 grid
of allowable boundary positions within each tile. To avoid
placing boundary points at tile corners, all grid positions in-
clude a half-grid-cell offset of(2−(1+M)

,2−(1+N)).

Rule 2: No more than one boundary segment may cross
the side of a tile, as shown in Figure3. This rule ensures that
both sides of all boundary segments have at least one nearby
bixel sample value to determine its color.

Rule 3: No boundary segment may cross or intersect a
tile corner, because boundaries denote discontinuous intensi-
ties or gradients, and would be ambiguous at a sample point.
Boundary segments cross over the tile sides, but never tile
corners.

Pixels Bixels Forbidden

Figure 3: A variety of tiles and boundary segments: (a) pix-
els have tiles without boundaries, (b) bixels have 0 to 4
boundary segments that meet at one boundary point, and
each segment must cross a different tile side; (c) all other
tile configurations are invalid.

In our implementation, all boundary segments are straight
lines for simplicity. Curved segments might be useful for
fonts or extreme enlargements (such as Figure11) but re-
quire more complex rules to avoid extra intersections, as
shown in the last tile in Figure3. Straight boundary segments
and the three rules above also limit graph connectivity; seg-
ments leaving a boundary point can only connect to bound-
ary points in the tile above, below, or to the right or left. As
shown in Figure3, these rules forbid several seemingly use-
ful boundary configurations. These “complex” tiles are quite
rare in our test images, as they were for Balaet al.[BWG03]
who used slightly different boundary rules. In early discus-
sions with them that predated both of our papers, we agreed
that tile subdivision to form multi-resolution tiles can handle
arbitrary boundary complexity, but we did not need them for
any test images we explored.

Just two bits per tile can encode all boundary segments
in a bixel image, because adjacent tiles share sides. In each
tile’s lower left (A) corner we store a 2-bit ‘lb’ (for left, bot-
tom) value whose most significant bit is FALSE if the tile’s
left side is cut apart by a boundary segment, and the LSB ap-
plies to bottom side. Combined with three more bits each for
boundary point position(xp,yp), each bixel’s storage cost is
typically 8 bits greater than the same image stored as pixels
alone.

Bilinear basis: Although much better filters exist for pre-
filtering and reconstruction (e.g. [MN88]), we use the bilin-
ear basis both for pre-filtering to create bixels from scenes
and for the interpolation needed to evaluate a bixel image at
any point between its sample points at integer (x,y) locations.
Bilinear interpolation is also widely available in commodity
texture-mapping hardware, but bixel bilinear bases are orga-
nized into patch functions that depend on nearby boundaries
as well as sample values at tile corners as shown in Figure4
and explained in Section4.

A B

CD

bpt

(a) (b) (c)

bpt
xp

yp

B
oundary

Segm
ent

Figure 4: Tile Details: (a) A tile is a1× 1 area with bixel
sample points at its corners. It holds only one boundary
point, and may be connected to others in adjacent tiles by
straight line boundary segments. (b) Reconstruction of a
4-tile portion of a bixel image without boundaries: all9
bixel samples are zero except center sample at1.0. (c) With
boundaries: patch functions bilinearly interpolate or extrap-
olate intensities only within their tile regions.

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

Tile Regions and Patch Functions:The bixel image re-
construction functions described in Section4 let us evaluate
bixel image intensity values at any point(dx,dy) within any
tile (0 ≤ dx, dy≤ 1). As we will see, boundaries always
complicate this task because they split tiles into separatetile
regions, as shown in Figure5. Each tile region always in-
cludes at least one tile corner (by Rule 2), and we use these
corner letters to name each kind of tile region. Each kind
of region has apatch function P(dx,dy) that specifies the
bixel intensity at any position(dx,dy). Symmetry permits us
to compute all tile regions from 10 unique patch functions,
given in Appendix10and explained in Section4.1.

Complexity: The seemingly arbitrary limits on bound-
ary complexity within a tile were chosen to match the alias-
ing limits imposed by sample points. Without boundaries, an
M×N-tile bixel image holds a maximum ofM×N intensity
changes, as it might from sampling the Nyquist frequency si-
nusoidcos(πx)cos(πy) shown in Figure6. If we add a com-
plete, 4-connected boundary point to every tile in this image,
it becomes a checkerboard with adjustable boundaries; and
every bixel sample point is enclosed in its own region. No al-
lowable boundary point adjustment can create new regions,
no more bixel boundary segments can be adopted, and any
boundary segment deletions will merge existing regions.

A B

CD

A B

CD

bpt

A B

CD

bpt

A B

CD

bpt

A B

CD

bpt

A B

CD

bpt

(a) (b) (c)

(d) (e) (f)

DW
DW

DW DW

DW

CECE

CE CE

CE

CN

CN

AS AS

WA

WA

EB

EB
EB

WA

N
D

dy

dx

SB

SB

DN

ABCDP

AP BP

CP
DP

AP

DP

BCP

ABD
P

CP

ABP

CtP
DtPAD

P

BC
P

Figure 5: Six tile configurations that define all patch func-
tions P() needed to interpolate bixel intensities within tile
regions. Tile corners are A, B, C and D; neighbors are de-
noted by a direction subscript for east, west, north and south
neighbors, e.g. AS is the south neighbor of A.

4. Bixel Reconstruction

Bilinear re-sampling and reconstruction methods are
straightforward for pixels, and we can extend them to in-
terpolate bixel images as well if we proceed tile-by-tile and
region-by-region. As Figure5 shows, boundary segments
connect boundary points in adjacent tiles, and split each tile
into regions. We named each kind of tile region by the let-
ters of the tile corners they contained, and each tile-region

has its own “patch function”P(), which computes the bixel
image intensities at position(dx,dy) within its tile. To evalu-
ate the bixel image at any desired point (x.dx, y.dy), we must
first find the tile (atx, y) and the tile region that contains
that point, and then evaluate that tile region’s patch func-
tion P() at (dx,dy). Though the number of permutations of
tile regions is large, by patch re-use and 90◦ rotations we
can reduce all of them to just ten unique patch functions
held in the 6 example tiles shown in Figure5. Each of the
10 patch functions perform bilinear interpolation between
a selected combination of neighboring bixel sample points,
chosen by the presence or absence of nearby boundary seg-
ments. Section4.1and Appendix10 hold further details for
each patch function, and we provide C++ source code for
bixels atwww.cs.northwestern.edu/ jet/publications.html.

Goals for this boundary-switched bilinear scheme are to
ensure that: (1) bixel intensities interpolate all bixel sam-
ples; (2) intensitiesI match along adjacent tile sides; and (3)
gradients∇I match along adjacent tiles if connectivity con-
straints allow it. Our library meets these goals for all patch
functions exceptPABD (Figure5e) that must average gradi-
ents at theD andB corners to cover the region with a single
patch function. If we splitPABD into two patch functions that
meet along the line between cornerA and the tiles’ bound-
ary point, then it is possible to satisfy all patch goals, but this
two-part patch is more complicated to evaluate.

Patch functions automatically provide reasonable behav-
ior for small closed loops of boundary segments. If the loop
encloses only one sample point, then the patch functions for
tile regions within the loop are held constant at that one sam-
ple point value. Loops that enclose either two or three sample
points are linearly shaded by the gradients defined by those
samples, and larger loops are shaded bilinearly.

Sampling

Distance

Sampling

Distance

Figure 6: (a) Reconstructed scan-line from2D a boundary-
free bixel image (e.g. pixels) with the maximum number of
intensity reversals; (b) Bixel reconstruction with the maxi-
mum possible boundary complexity.

4.1. Patch Function Details

This section explains how to construct patch functions for
tile regions and can be skipped on first reading. We be-
gin with the simplest; with no boundary segments at all,
PABCD(dx,dy) (see Figure5(a)) describes bixel intensities
within a tile region that covers the entire tile, free of any
interference from boundaries. Its patch function is a simple
bilinear interpolation between tile corner sample valuesA,

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

B, C, andD, at position(0≤ dx,dy≤ 1) within the tile:

PABCD(x,y) =A(1−dx)(1−dy)+B(dx)(1−dy)+
C(dx)(dy) +D(1−dx)(dy).

(1)

We can rewritePABCD in matrix form if we define a row
vectorV to hold sample values from the tile corners:V =
[A B C D]; define a column vectorX to hold the 2-D
polynomial basis:X = [1 dx dy dxdy]T ; and define a
bilinear coefficient matrixW:

W =









1 −1 −1 1
0 1 0 −1
0 0 0 1
0 0 1 −1









.

Then Equation1 becomes:

PABCD(dx,dy) = V ·W ·X. (2)

To derive theW matrix, make a matrixXcorner whose
columns are theX vector evaluated at the tile corner posi-
tions for A, B, C, D, use it to replaceX in Equation2, and
then the left-hand side must equal the column vectorV. Solv-
ing for W yields

W = X−1
corner. (3)

Nearly the same method can define patch functions for
less complete tile regions. Figure5(b) showsPA(dx,dy) for
a tile region with only one corner (A). Boundaries separate
tile cornerA from the other three, forcing us to use other
nearby bixel samples to determine the bilinear patch func-
tion. Though we will only evaluate the patch function within
its tile region, we could easily evaluatePA() anywhere, in-
cluding the corners that are unreachable due to intervening
boundaries. We call these unreachable corners thepseudo-
cornersfor the patch, and their values are marked with an as-
terisk: they areB∗, C∗ andD∗ for patch functionPA(dx,dy).

Pseudo-corners make patch finding simpler, because any
combination of tile corners and pseudo-corners applied to
Equations2 and3 will determine the patch. First, we write
corner expressions that best satisfy the three bixel interpo-
lating goals listed at the start of this section. Next, we con-
vert them to matrix form and apply Equations2 and3 to set
the patch. For patch functionPA(dx,dy), the expressions are
simple: we make pseudo-corners fromA’s south and west
neighbors (AS andAW in Figure5(b)). If the path from cor-
ner A along the straight dotted line toAW is not cut by a
boundary segment, then we use backward-differencing to set
the patch’s x-derivative; otherwise it is zero. Similar con-
ditions for neighborAS sets the y-derivative, and produces
these pseudo-corner expressions forPA():

B∗ = A+aaw(A−AW),

D∗ = A+aas(A−AS),

C∗ = B∗ +D∗
−A; (4)

where path bitaas = 1 if the (A,AS) path is not cut by a
boundary segment, and zero otherwise; path bitaaw = 1 if
the(A,AW) path is intact, and zero otherwise.

Next, put these expressions in matrix form. Define a row
vectorV′ that holds values of the nearby bixel samples that
patch functionPA() will use:V′ = [A AW AS]. Also, de-
fine a matrixT that transformsV′ into a more generalV
vector that holds the tile’s corner or pseudo-corner values:
for our PA() patch function,V′T = [A B∗ C∗ D∗] and
T is determined by Equation4 above. Then the patch func-
tion is:

PA(dx,dy) = V′
·T ·W ·X (5)

We can apply this same method with complementary neigh-
bors to derive thePB(), PC() andPD() patch functions given
in Appendix10 and shown in Figure5(b). In each case, the
W matrix is fixed, and the T matrix has a simple dependence
on connectivity; patch function evaluation is a weighted sum
of stored bixel sample values.

Each of the patch functions in Figure5(b) had no more
than two neighboring sample points, limiting us to a planar
solution. Tile regions with more corners have more neigh-
boring sample points available, and permit higher-order sur-
face fitting if desired. But for thePBC patch in Figure5(c)
we chose to use the two east neighborsBE andCE to set
the patch function’s two pseudo-corners. We used backwards
differencing to estimate the x-derivatives atB andC, and
path bitsbbe andcce mark intact dotted-line paths fromB to
BE and fromC toCE respectively. PatchPBC pseudo-corners
are:

A∗ = B+bbe(B−BE),

D∗ = C+cce(C−CE); (6)

As before, we build aV′ matrix fromA∗, B, C andD∗, con-
struct theT matrix from Equation6, and then matrix mul-
tiplications produce the patch functionPBC(dx,dy) given in
Appendix10. Repeating this scheme for the remaining three
adjacent pairs of tile corners will produce patch functions
PAB(), PCD() andPAD().

Tile regions that include three corner functions such as
PABD() in Figure 5(e) have proved the most troublesome,
because the bilinear function can be over-constrained by tile
side derivatives. It is these patch functions that need the most
improvement, perhaps by a new scheme that splits them
into two or more bilinear patches, or perhaps by applying
higher-order surfaces such as quadratics or cubics. To find
our patch function, we compute a single pseudo-corner, but
assign its value from the average of two forward-differenced
estimates:

C∗ = B+D+A
(ddw +bbs−2)

2
−DW

ddw

2
−BS

bbs

2
; (7)

As before, we only use forward difference estimates taken
from intact paths between neighboring sample values. Path
bits ddw and bbs give connectivity for theD–DW and B–
BS paths respectively. Note that ourV′ vector contains five
sample values rather than four. This enlarges theT matrix

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

to size 5× 4 in Equation7 and may complicate hardware
implementations.

Finally, a tile with just one boundary segment as seen in
Figure 5(f) requires a slightly different approach, because
its tile regions are not disjoint. Our solution is simple; we
find the tile side cut by the single boundary segment, and
construct a parallel joint-line that passes through the bound-
ary point (xp,yp). We then construct three separate patch
functions. The patch that does not share a tile side with a
boundary (PAB() in Figure5(f)) is unaffected by the bound-
ary segment; thusPAB() = PABCD(). In the other two patch
functions, the ’t’ suffix denotes a single boundary segment
cuts the top of the tile. We requirePDt andPCt to match the
PAB() tile value along the joint line.

Unlike all other tiles, we can compute a valuebpt at the
boundary point location(xp,yp):

bpt =A(1−xp)(1−yp)+B(xp)(1−yp)+
C(xp)(yp) +D(1−xp)(yp).

(8)

We use this boundary-point value along with the usual cor-
ners, pseudo-corners, and path bits to specify the patch func-
tions on either side of the boundary segment. ForPCt, we find
the pseudo-corner

D∗ = C+cce(C−CE), (9)

and then construct aT matrix that will transform the
bixel sample valuesV′ = [A B C D CE] into V =
[D∗ B bpt C]. A mirror image of this procedure pro-
duces the correspondingPDt() patch function.

4.2. Bixel Resizing and Resampling

UpSample

DownSample

Figure 7: Upsampling and downsampling of bixels

Enlarging one bixel image to make another requires re-
sampling of both the image and the boundary geometry,
as shown in Figure7, but is otherwise straightforward. To
find the value of each output sample point we find the cor-
responding position in the input bixel image, find its tile,
find the position within that tile, and then evaluate its patch
function at the desired position. To make new boundaries,
we copy the source boundary point positions to their corre-
sponding positions in the output bixel image, and then re-
place source image boundary segments by a line-drawing-
like process that creates new connected boundary points in
any new tiles. Note that small amounts of enlargement (e.g.

1.1) can sometimes require new boundaries that can only be
approximated due to bixel boundary placement rules as in
Figure7, lower left.

Reducing the size of a bixel images reveals several im-
portant shortcomings. Straightforward minification methods
work well for the bixel samples, but as the reduced-size
boundaries become too dense to represent by 4-connected
boundary segments, we must confront a strangely con-
strained 2D mesh simplification problem. How should we
modify the shrunken boundaries to best fit bixel constraints?
What simplifications are most visually acceptable? Even
more fundamentally, when should shrunken boundaries that
exceed bixel complexity limits be retained or replaced with
boundary-free tiles of the same overall intensity and gradi-
ent?

5. Antialiasing: Bixel to Pixel Conversion

Bilinear

 Filter-
Bixels reconstructed

with boundaries

Bixels reconstructed

without boundaries

Residue

+
Antialiased

 Pixels

Filtered

Residue

Figure 8: Anti-aliasing for bixel display

If displayed as pixels, bixel samples will show aliasing,
because their embedded boundaries are discontinuous and
infinitely sharp. To remove this aliasing, we need to smooth
away only the extra, excessively high-frequency components
that these sharp boundaries provide. If a bixel image had no
boundaries, its sample values become those of ordinary bi-
linearly interpolated pixels. We must take care to restrict the
smoothing to apply only to the portions of the signal that
disappear when the boundaries are removed.

Our method for anti-aliasing bixels for display relies on
super-sampling to approximate continuous signals, and is
outlined in Figure8. We first collect a uniform grid of sam-
ples from the bixel image. We use multiple samples per tile
(typically 4× 4), to approximate the piecewise continuous
signal that the bixel represent. We then remove (or ignore)
all boundaries from the same bixel image and repeat the
process. The difference between these two grids of samples
represents the ’residue’ signal, which holds only the image
components that the boundaries introduce into the bixel im-
age. We smooth this residue by bilinear filtering and down-
sampling, then add it to the original bixel samples to produce
anti-aliased display pixels from bixels.

6. Making Bixels from Pixels and Boundaries

Computer graphics renderers can directly construct bixels as
their rendered output, but other data sources usually offer

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

pixels and boundary estimates separately. We cannot sim-
ply append boundary segments to pixels to form bixels, be-
cause bixel values differ from pixels near boundaries. We
need to find the smoothed but unrelated scene values that the
boundaries keep separate. For the given boundaries, we want
to find the bixel image that, when converted back to pixels,
matches the source image.

An iterative approach yielded very good results, as seen
in Section7. We initialize the bixel sample values to match
the input pixel values, and set its boundary points and seg-
ments from given boundary data. We then convert this ten-
tative bixel image back to pixels, as described in Section5,
and subtract it from the source pixel image to find a bixel
error image. We subtract a small fraction of the error image
from the bixel sample values, and repeat the process until the
error converges to zero.

7. Results

(a) (b) (c)

Figure 9: (a) Pixel-only cable image; (b) pixel-only warping
of a) increases blur in enlarged regions; (c) warped bixels
preserves sharpness

As shown in Figures1, 9, 10, 11 and12, bixels are appli-
cable to both photographic and synthetically rendered im-
ages. For the images in Figure1 and 10, bixels perform
well in preserving most of the sharp features from an ex-
tremely low resolution input image. As evident in the bone
image of Figure10, bilinear interpolation for pixel images
noticeably blurs details near the silhouettes and boundaries.
Similar degradation of visual boundaries is also evident in
the Lincoln image (Figure1) where bilinear interpolation
for pixels obscures the nose, eyes and other important fea-
tures (Note: boundaries shown were hand-selected). Figure9
demonstrates boundary preservation in bixels for arbitrary
nonlinear warps. Figure11illustrates nonlinear and quadrat-
ically curved boundaries. The bixel interpolation scheme
also preserves discontinuities well for medium to high res-
olution input images. In Figure12, the bixel interpolation
scheme keeps the sharp corners sharp and avoids the blur-
ring visible in the pixel image.

8. Discussion

As Section 2 shows, others have placed discontinuities
within sampled images before, but each differs from bix-

(a) (b) (c)

Figure 10: Bixels preserve sharp boundaries for low resolu-
tion input images. (a) Silhouette shapes in just65×50 bix-
els; (b) Pixels ignore boundaries and blend background and
foreground; (c) Bixels’ sharp features reveal bone structure.
Source image courtesy Ramesh Raskar, MERL.

(a) (b)

(c) (d)

Figure 11: (a) 25×25 pixel ray-traced torus (bilinear); (b)
Enlarged red box contents from (a) (bilinear); (c)50× 50
bixels (bilinear) preserve contours well. Note: our slight
shadow boundary misplacement caused gradient errors; (d)
Enlargement preserves sharpness. Source image courtesy
Kavita Bala and Bruce Walter, Cornell University.

els in important ways. Though Salisburyet al. [SALS96]
showed excellent NPR results, the reported their method was
problematic for general purpose images, because it reduced
or distorted gradients near boundaries and used exhaus-
tive connected-path searching for image sampling and re-
construction. Bixels use switched linear filters implemented
as patches to avoid these problems. Sen [SCH03] used 2-
bit boundary codes similar to bixels, and his upcoming

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

(a)

(c)

(b)

(d) (e)

Figure 12: (a) 100×100pixel plastic part photo (bilinear)
(b) 100×100bixels (bilinear) hold both gentle curves and
acute boundary angles well (c) pixels destroy small corners,
(d)but bixels do not (e) Difference (a)-(b) shows boundary-
applied signal.

work [Sen04] defines nearly the same connectivity rules. His
reconstruction filter is simple, fast, and hardware-based, but
also reduces intensity gradients near boundaries, a distortion
shared with [SALS96, BWG03] and [RBW04]. More cen-
trally, these boundaries are viewed only as an aid to render-
ing, rather than visually meaningful scene features available
in machine-readable form.

We think bixels might apply to a broader range of research
topics in computer graphics. For example, image morphing
and warping schemes (see [GDCV98]) routinely rely on ar-
tificially placed boundaries to adjust images: bixels might
permit control based on intrinsic image content. For image
compositing, bixels can remove the ambiguity of the ‘alpha’
channel, which conflates the sub-pixel position of the out-
line of an object with its transparency. Many authors have
noted that remaining difficulties with texture synthesis are
often related to poor statistical descriptions of visual bound-
aries; bixel-based methods might offer better results. Simi-
larly, visual boundaries are fundamental tools to guide non-
photorealistic rendering methods; perhaps bixels could cou-
ple sketch-like renditions to boundaries linked to 3D shapes.

Bixels have several serious shortcomings. Perhaps the
most obvious is the need to both reduce as well as enlarge
bixel images, as briefly discussed in Section4.2. Also, cap-
turing bixel data photographically is currently difficult be-
cause visual boundaries are not always marked by well de-
fined intensity changes. Also our conversion method to bix-
els from pixels and boundaries (Section6) could be im-
proved; we adjust only bixel sample values and do not refine
the boundary positions because it presents a difficult nonlin-
ear optimization problem endangered with local minima. A
better solution might assist bixel reconstruction from lower
quality source data. Local control of bixel sharpness is also
sorely needed; for example Lincoln’s nose-tip in Figure1

should not be infinitely sharp, and we believe that Elder’s
work [Eld99] offers a good approach to this problem.

The importance of readable visual boundaries in images
leading to new approaches to capture them photographically.
For example, recent work by Raskaret. al [RR04] finds sil-
houette and self-occlusion boundaries using multiple photo-
graphic flash units, and they kindly assisted us by supplying
source data for Figure10 and by processing our photos into
the boundary precursors we needed to the create bixel image
for Figure12.

9. Conclusion and Future Work

Bixels offer raster images with embedded visual boundaries
that are infinitely sharp, positioned well, and machine read-
able. They reversibly merge both 2-D image geometry and
sampled image data, and unlock the previously fixed rela-
tionship between sharpness and the number of image sam-
ples. They can describe discontinuities that form arbitrary
planar graphs without restriction to closed loops, and can
separate arbitrary and variable intensities and gradients. The
seem suitable for a wide variety of graphical data sets in-
cluding images, depth, surface normals, and more. Bixels
use bilinear patches for each tile region, and with care they
can be rendered as texture-mapped polygonal meshes in
OpenGL. Bixels are a good fit to computer graphics because
the lighting changes and geometric shapes responsible for
most visual boundaries are readily available with high pre-
cision. However, improved methods to capture such bound-
aries photographically may broaden its range. We think bixel
images are but one step towards digital images that more
directly encode all of the visually-available contents of a
scene.

10. Appendix

We list the expressions for vectorV′ and matrixT ·W for the
tiles in Equation5.

PA: V′ = (A,AW ,AS); T ·W =







1 aaw aas 0
0 −aaw 0 0
0 0 −aas 0






.

aaw = 1 if pixelsA andAW are connected and 0 otherwise;aas = 1 if pixelsA andAS are
connected and 0 otherwise.

PB: V′ = (BS,B,BE); T ·W =







0 0 −bbs 0
1+ bbe −bbe bbs 0
−bbe bbe 0 0






.

bbe = 1 if pixels B andBE are connected and 0 otherwise;bbs = 1 if pixels B andBS are
connected and 0 otherwise.

PC: V′ = (CN ,C,CE); T ·W =







−ccn 0 ccn 0
1+ ccn + cce −cce −ccn 0

−cce cce 0 0






.

cce = 1 if pixelsC andCE are connected and 0 otherwise;ccn = 1 if pixelsC andCN are
connected and 0 otherwise.

PD: V′ = (DW ,DN ,D); T ·W =







0 −ddn 0 0
−ddn 0 ddn 0

1+ ddn ddw −ddn 0






.

ddw = 1 if pixels D andDW are connected and 0 otherwise;ddn = 1 if pixels D andDN
are connected and 0 otherwise.

c© The Eurographics Association 2004.

Tumblin and Choudhury / Bixels

PAD: V′ = (A,AW ,DW ,D); T ·W =











1 aaw −1 −aaw

0 −aaw 0 aaw

0 0 0 −dw

0 0 1 dw











.

aaw = 1 if pixels A andAW are connected and 0 otherwise;ddw = 1 if pixels D andDW
are connected and 0 otherwise.

PBC: V′ = (B,BE ,CE ,C); T ·W =











1+ bbe −bbe −1− bbe −bbe

−bbe bbe bbe −bbe

0 0 −cce cce

0 0 1+ cce −cce











.

bbe = 1 if pixels B andBE are connected and 0 otherwise;cce = 1 if pixelsC andCE are
connected and 0 otherwise.

PABD: V′ = (A,B,BS,D,DW); T ·W =















1 −1 −1 ddw+bbs
2

0 1 0 0

0 0 0 −
bbs
2

0 0 1 0

0 0 0 −
ddw

2















.

bbs = 1 if pixelsB andBS are connected and 0 otherwise;ddw = 1 if pixelsD andDW are
connected and 0 otherwise.

PCt : V′ = (A,B,C,D,CE);

T ·W =



















1 −1 −1 1
0 1 0 −1

(1+cce)·yp
yp−1

(1+cce)·yp
1−yp

(1+cce)
1−yp

(yp+cce)

yp−1
yp

1−yp

yp
yp−1

yp
yp−1

yp
1−yp

yp·cce
1−yp

yp·cce
yp−1

cce
yp−1

cce
1−yp



















.

cce = 1 if pixelsC andCE are connected and 0 otherwise and the boundary point within a
tile is located at(xp,yp).

PDt : V′ = (A,B,C,D,DW); T ·W =



















1 −1 −1 1
0 1 0 −1

0
yp

1−yp
0

yp
yp−1

0
(1+ddw)·yp

yp−1 1
ddw+yp
1−yp

0
−yp·ddw

yp−1 0 ddw
yp−1



















.

ddw = 1 if pixelsD andDW are connected and 0 otherwise and the boundary point within

a tile is located at(xp,yp).

References

[BWG03] BALA K., WALTER B., GREENBERGD. P.: Combining edges and points
for interactive high-quality rendering.ACM Trans. Graph. 22, 3 (2003),
631–640.3, 4, 9

[Can86] CANNY J.: A computational approach to edge detection.IEEE Trans. Pat-
tern Anal. Mach. Intell. 8, 6 (1986), 679–698.2

[Car84] CARPENTER L.: The a -buffer, an antialiased hidden surface method. In
Proceedings of the 11th annual conference on Computer graphics and inter-
active techniques(1984), ACM Press, pp. 103–108.3

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SANTELLA A.: Sug-
gestive contours for conveying shape.ACM Transactions on Graphics, Spe-
cial issue: Proceedings of ACM SIGGRAPH 2003 22, 3 (July 2003), 848–
855. 1, 3

[DJ03] DEAN JACKSON E.: Scalable vector graphics (svg)1.2: W3c working draft.
web document, Nov 2003.2

[Dur02] DURAND F.: An invitation to discuss computer depiction. InProceedings
of the 2nd international symposium on Non-photorealistic animation and
rendering(2002), ACM Press, pp. 111–124.2

[Eld99] ELDER J.: Are edges incomplete?International Journal on Computer Vision
(1999).1, 2, 9

[FA91] FREEMAN W. T., ADELSON E. H.: The design and use of steerable fil-
ters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 9
(1991), 891–906.2

[GDCV98] GOMES J., DARSA L., COSTA B., VELHO L.: Warping and Morphing of
Graphical Objects. Morgan Kaufmann Publishers, 1998.9

[GG01] GOOCH B., GOOCH A.: Non-Photorealistic Rendering. A. K. Peters, Ltd.,
2001.3

[Hec92] HECKBERT P.: Discontinuity meshing for radiosity. InEurographics Ren-
dering Workshop(May 1992), pp. 203–216.3

[KSE∗03] KWATRA V., SCHöDL A., ESSA I., TURK G., BOBICK A.: Graphcut
textures: image and video synthesis using graph cuts.ACM Trans. Graph.
22, 3 (2003), 277–286.2, 3

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolution 3d
surface construction algorithm. InProceedings of the 14th annual confer-
ence on Computer graphics and interactive techniques(1987), ACM Press,
pp. 163–169.2

[LTG92] L ISCHINSKI D., TAMPIERI F., GREENBERGD. P.: Discontinuity meshing
for accurate radiosity.IEEE Comput. Graph. Appl. 12, 6 (1992), 25–39.3

[LV00] L OKOVIC T., VEACH E.: Deep shadow maps. InProceedings of the 27th
annual conference on Computer graphics and interactive techniques(2000),
ACM Press/Addison-Wesley Publishing Co., pp. 385–392.3

[MN88] M ITCHELL D. P., NETRAVALI A. N.: Reconstruction filters in computer-
graphics. InProceedings of the 15th annual conference on Computer graph-
ics and interactive techniques(1988), ACM Press, pp. 221–228.4

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.: All-frequency shadows using
non-linear wavelet lighting approximation.ACM Trans. Graph. 22, 3 (2003),
376–381.3

[OF02] OSHER S. J., FEDKIW R. P.: Level set methods and dynamic implicit sur-
faces. Springer-Verlag, 2002.2

[OS75] OPPENHEIM A. V., SCHAFER R. W.: Digital Signal Processing. Prentice
Hall, Englewood Cliffs, NJ, USA, 1975.1

[Pal99] PALMER S. E.:Vision Science: Photons to Phenomenology. The MIT Press,
Cambridge, Massachusetts, 1999.1

[PM90] PERONA P., MALIK J.: Scale-space and edge detection using anisotropic
diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7 (1990), 629–639.2

[RBW04] RAMANARAYANAN G., BALA K., WALTER B.: Feature-based textures. In
Proceedings of Eurographics Symposium on Rendering(June 2004), Jensen
H. W., Keller A., (Eds.), vol. (to appear).3, 9

[RR04] RAMESH RASKAR KAR-HAN TAN R. F. J. Y. M. T.: Non-photorealistic
camera: Depth edge detection and stylized rendering using multi-flash imag-
ing. ACM Transactions on Graphics, special issue on Proceedings of ACM
SIGGRAPH Annual Conference 23, 3 (2004), (to appear).2, 9

[SALS96] SALISBURY M., ANDERSONC., LISCHINSKI D., SALESIN D. H.: Scale-
dependent reproduction of pen-and-ink illustrations. InProceedings of the
23rd annual conference on Computer graphics and interactivetechniques
(1996), ACM Press, pp. 461–468.3, 8, 9

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.: Shadow silhouette maps.ACM
Trans. Graph. 22, 3 (2003), 521–526.3, 8

[Sen04] SEN P.: Silhouette maps for improved texture magnification. InProceedings
of Eurographics/SIGGRAPH Graphics Hardware(August 2004), McCool
M., Akenine-Moller T., (Eds.), vol. (to appear).3, 9

[SGG∗00] SANDER P. V., GU X., GORTLER S. J., HOPPEH., SNYDER J.: Silhouette
clipping. InProceedings of the 27th annual conference on Computer graph-
ics and interactive techniques(2000), ACM Press/Addison-Wesley Publish-
ing Co., pp. 327–334.3

[SKS97] SIDDIQI K., K IMIA B. B., SHU C. W.: Geometric shock-capturing
ENO schemes for subpixel interpolation, computation, and curve evolution.
Graphical Models and Image Processing 59, 5 (1997), 278–301.2

[SLD92] SALESIN D., LISCHINSKI D., DEROSE T.: Reconstructing illumination
functions with selected discontinuities.Third Eurographics Workshop on
Rendering(May 1992), 99–112.3

[WWT∗03] WANG L., WANG X., TONG X., L IN S., HU S., GUO B., SHUM H.-Y.:
View-dependent displacement mapping.ACM Transactions on Graphics 22,
3 (2003), 334–339.3

[ZZV∗03] ZHANG J., ZHOU K., VELHO L., GUO B., SHUM H.-Y.: Synthesis of
progressively-variant textures on arbitrary surfaces.ACM Trans. Graph. 22,
3 (2003), 295–302.3

c© The Eurographics Association 2004.

