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This article introduces quadrature prefiltering, an accurate, efficient, and fairly simple
algorithm for prefiltering polygons for scanline rendering. It renders very high quality images
at reasonable cost, strongly suppressing aliasing artifacts. For equivalent RMS error, quadra-
ture prefiltering is significantly faster than either uniform or jittered supersampling. Quadra-
ture prefiltering is simple to implement and space-efficient; it needs only a small two-
dimensional lookup table, even when computing nonradially symmetric filter kernels.
Previous algorithms have required either three-dimensional tables or a restriction to radially
symmetric filter kernels. Though only slightly more complicated to implement than the widely
used box prefiltering method, quadrature prefiltering can generate images with much less
visible aliasing artifacts.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation
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INTRODUCTION

Good spatial antialiasing is computationally expensive, a significant con-
sumer of computing resources when rendering images with very high
spatial frequency patterns. Fast, reliable, antialiasing methods are crucial,
yet the most popular methods still fail occasionally in annoying and
unpredictable ways. They fail spectacularly on a few pathological images,
such as checkerboards (Plates 8–10), arrays of very thin, sliver-like poly-
gons, or zone plate patterns (Plates 1–7). Antialiasing failures may also
appear in more subtle, pernicious ways; a few images may have a noisy
twinkling horizon, a flashing, wobbly-looking, textured region, or some
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visibly noisy edges. We briefly review the cause of these failures and then
describe a new algorithm, quadrature prefiltering, as an efficient solution.
Aliasing is a consequence of sampling, a penalty for converting a contin-

uous image to a discrete image. Rendering algorithms create a discrete or
pixel image Ipix(n1, n2) by sampling an ideal continuous image Iideal(x, y),
an abstraction built from geometric primitives such as polygons or polyno-
mial patches. Regard this abstraction as an explicit two-dimensional image
intensity function Iideal(x, y), with a finite value for all real (x, y). To avoid
aliasing when sampling, one must ensure that all significant frequency
components of Iideal(x, y) are below the Nyquist spatial frequencies (fx, fy),
defined as exactly half the sampling rates [Oppenheim and Schafer 1989;
Mersereau and Dudgeon 1984]. Unfortunately, Iideal(x, y) often contains
sharp discontinuities at the boundaries of geometric primitives that cause
high amplitude spectral components at extremely high frequencies.
Three techniques are now commonly used to reduce aliasing: prefiltering,

uniform super sampling, and stochastic sampling. Prefiltering methods
change the spectrum of Iideal(x, y), attenuating all high-frequency compo-
nents that may alias by low-pass filtering before sampling at pixel rates.
Both supersampling methods leave the spectrum of Iideal(x, y) unchanged,
but increase the sampling rates (and hence the Nyquist rates) to some
small multiple of pixel rates, then form each pixel of Ipix(n1, n2) from a
weighted average of neighboring samples. Stochastic supersampling ran-
domly displaces the supersampling positions so that any aliased compo-
nents appear as uncorrelated noise in Ipix(n1, n2).
Only prefiltering methods can completely eliminate aliasing artifacts,

because only prefiltering imposes limits on the spectrum of Iideal(x, y) before
sampling. Although supersampling methods can often reduce aliasing
artifacts to the point of invisibility, they cannot guarantee good results for
all images. Because the Iideal(x, y) spectrum is unbounded, no supersam-
pling rate is ever high enough to avoid all possible aliasing; small geometric
primitives can always squeeze between the supersampling positions and
cause aliasing errors. Higher supersampling rates reduce the visibility of
aliasing but are costly, with quadratic time complexity as a function of the
highest spatial frequency component f in Iideal(x, y) that will not be aliased.
Stochastic or jittered supersampling methods disperse the aliasing of
high-frequency components of Iideal(x, y) as noise in Ipix(n1, n2). (See Dippé
and Erling [1992] for a good tutorial and bibliography on stochastic
sampling.) This noise degrades the final image, and the signal-to-noise
ratio grows only as the square root of the number of samples taken at each
pixel. High signal-to-noise ratios require high supersampling rates.
Supersampling methods are often far simpler and more flexible than

prefiltering methods and this probably accounts for their widespread use.
Prefilter methods evaluate continuous area integrals at each pixel, and
need detailed boundary information from Iideal(x, y) to find the integration
limits. Published methods require unoccluded polygonal primitives; that is,
the hidden surface problem must be solved completely and not just at
sample points in the image (see Catmull [1984] for an efficient algorithm
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for solving this problem). Supersampling methods can easily be used on a
mixture of complex primitives in Iideal(x, y), such as polygons, implicit
equations, and parametric surfaces. Computing boundary information di-
rectly for nonpolygonal surfaces is a difficult problem and limits the use of
prefiltering algorithms primarily to polygonal object representations. How-
ever, many commercially available image synthesis programs use scanline
algorithms that are well suited for prefiltering, and convert nonpolygonal
surface primitives into polygonal approximations before rendering. For
these algorithms, prefiltering can provide a level of antialiasing perfor-
mance only achievable with very high supersampling rates.
Most published prefiltering methods are slow, costly, and complex, so

only one simple prefiltering method has found wide acceptance. This
special case is known as box filtering or area sampling. This algorithm clips
visible polygons in Iideal(x, y) to a 1 3 1 pixel-sized region to form polygon
fragments, then sets pixel color as the sum of each fragment’s shaded color
weighted by its area. This is equivalent to prefiltering Iideal(x, y) with a
constant, box-shaped, continuous filter kernel h(x, y) where

Box filter: h~ x, y!

5 H1 for all 2 0.5 # x , 0.5 and 2 0.5 # y , 0.5
0 otherwise

J
before sampling the result at each integer (x, y).
The box filter performs poorly: its frequency response is H(vx, vy) 5

sinc(vx) z sinc(vy), with Nyquist rates at (61, 61). It blurs the image by
attenuating spatial frequencies just below the Nyquist rates, yet still
allows significant aliasing because its response shrinks slowly with in-
creasing frequency.
One of the earliest sophisticated prefiltering algorithms [Feibush et al.

1980] finds the convolution of right triangle primitives with a continuous
filter kernel h(x, y) by using a polar-coordinate lookup table. For each pixel,
all visible portions of the polygon primitives in Iideal(x, y) are first clipped
against the rectangular extent of the filter kernel, then subdivided into
triangles, then further decomposed into right triangles with a vertex at the
pixel center. Decomposing an arbitrary polygon into these oriented right
triangles requires a fairly complex set of geometric computations, repeated
for each affected pixel. This algorithm requires a two-dimensional lookup
table if h(x, y) is radially symmetric; nonradially symmetric filter kernels
require a three-dimensional table, which may be unacceptably large.
Others have extended this early work. Abram et al. [1985] devised a more

efficient implementation of the algorithm that avoids the full complexity of the
general triangular decomposition except in a few special cases. However, the
algorithm is still quite complex and has the same three-dimensional table
requirements for nonradially symmetric filter kernels. Catmull [1984] ex-
tended the Feibush et al. [1980] algorithm to temporal antialiasing, and
developed an efficient algorithm for solving the hidden surface problem at the
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pixel level, a necessary step in prefiltering. Another prefiltering algorithm that
constrains filter kernels to be radially symmetric is described in Turkowski
[1982].
A very elegant analytic prefiltering algorithm using prism splines is

described in McCool [1995]. This algorithm does not require lookup tables.
However, efficiently evaluating arbitrary filter kernels is computationally
expensive and relatively complicated.
The prefiltering algorithm described in this article, quadrature prefilter-

ing, provides several capabilities not found in previous work.

(1) Arbitrary filter kernels are computed with only a two-dimensional lookup
table, eliminating the radial symmetry constraint. This is useful, for
example, in exploiting the oblique effect in human vision [Essock 1982].
Humans have significantly lower spatial resolution along the diagonal
than along the horizontal or vertical axes. By using a prefilter with a
diamond-shaped passband and sampling the image on a hexagonal rather
than a rectangular lattice, the number of data points needed to sample an
image without aliasing artifacts can be reduced by a factor of two. The
diamond-shaped prefilter passband required for this has a nonradially
symmetric filter kernel.

(2) This algorithm lifts the restriction of constant Iideal(x, y) in the region of
integration present in many previous prefiltering algorithms, albeit at
greater computational cost. For constant Iideal(x, y) in the region of
integration, the complexity of the new algorithm is O(kn) where k is the
number of edges in the polygon and n is the order of quadrature used.
For Iideal(x, y) not constant in the region of integration, the new
algorithm is O(kn2). In practice we have encountered few situations
where the nonconstant Iideal(x, y) method is necessary.

(3) Quadrature prefiltering does not require the complicated geometric opera-
tions of Feibush et al. [1980]. The new algorithm is efficient and simple
and the rendering time part of the prefiltering algorithm, as opposed to the
table construction portion, can be implemented in a few tens of lines of
code.

Quadrature prefiltering is most easily applied to polygonal surface primi-
tives because their boundaries are straight line segments. Other primitives
may be used, but curved boundaries increase the complexity. Only the
polygonal surface primitive case is discussed here. This should not be a
serious limitation because many surface representations can be efficiently
converted to approximate polygonal representations at rendering time.

SIMPLIFYING THE CONVOLUTION INTEGRAL

Prefiltering consists of continuous convolution followed by sampling: the
ideal image Iideal(x, y) is convolved with the filter kernel h(x, y), then
sampled at integer (x, y) to form the discrete pixel output image Ipix(n1, n2).
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Equivalently, prefiltering is the evaluation of an area integral at each
pixel: each pixel in Ipix(n1, n2) equals the volume under the filter kernel
h(x, y) in the area defined by the inverted, displaced ideal image Iideal(n1 2
x, n2 2 y).

Ipix~n1, n2! 5 EEh~n1 2 x, n2 2 y!I ideal~ x, y!dx dy

5 EEh~ x, y!I ideal~n1 2 x, n2 2 y!dx dy. (1)

This integral is zero outside the region of support of the filter kernel. We
can take advantage of this fact to limit computation by clipping polygons to
the rectangular region of support of the filter kernel and only evaluating
the integral inside this region.
The convolution integral is difficult to evaluate in this form, so we

decompose it into several simpler pieces. First, split it into a sum of
individual integrals, one for each visible polygon fragment in Iideal that may
contribute to the pixel at (n1, n2). Then split each fragment’s integral into a
sum of simpler edge integrals ei, as shown in Figure 1. Form a trapezoid by
projecting each polygon edge to the y axis. Edge integrals integrate within
these gray trapezoidal regions; the sum of edge integrals equals the
integral within the polygonal region. We evaluate the edge integrals within
trapezoidal limits, using the trapezoid extending from an edge of a frag-
ment to the y axis (using the x axis is equally valid). The sum of the edge

Fig. 1. Decomposition of each polygon integral into edge integrals e1, e2, and e3.
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integrals is the integral over the fragment.

Ipix~n1, n2! 5 O
i

ei,

where ei 5 E
c

d E
0

fi~ y!

h~ x, y! z I ideal~n1 2 x, n2 2 y!dx dy. (2)

Define the fragment edge endpoints as (a, c) and (b, d). Function fi(y) 5 x
describes a line through these endpoints, giving the distance from the y
axis to the polygon fragment edge at height y, as shown in Figure 2.
The edge integrals are further simplified by assuming that Iideal(x, y) is
equal to a constant K inside the polygonal fragment’s region of integration.
The constant value, K, can be computed in a variety of ways. We use the
average of the image intensities at the vertices of the polygon fragment.
This is not a necessary assumption inasmuch as our algorithm will work
with nonconstant Iideal(x, y) but with higher computational cost because the
image function must be evaluated at more points in the integration
interval. Our experience has been that with the relatively small filter
kernels required for good antialiasing performance, the constant Iideal(x, y)
is reasonable for the vast majority of images.
The edge integral with the constant Iideal(x, y) assumption is

ei 5 K E
c

d E
0

fi~ y!

h~ x, y!dx dy. (3)

Fig. 2. Approximation of each edge integral as a weighted sum of line integrals. Form a
trapezoid by projecting each polygon edge to the y axis. Edge integrals integrate within these
gray trapezoidal regions; the sum of edge integrals equals the integral within the polygonal
region.
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Even this simplified integral does not generally have a closed form solution,
but it can be closely approximated using Gaussian quadrature, a numerical
integration method found in standard texts such as Burden and Faires
[1989].

GAUSSIAN QUADRATURE APPROXIMATION

Gaussian quadrature is a way to quickly and accurately approximate the
definite integral of a smooth function r(v). The solution is a weighted sum
of r(v)’s value at n carefully chosen “sample” points vj, using weights wj. If
r(v) is a polynomial of degree 2n 2 1 or less, then the Gaussian quadrature
approximation is precise. The simplest form of Gaussian quadrature esti-
mates the definite integral of r(v) over the fixed interval (21, 1):

E
21

1

r~v!dv > O
j51

n

wjr~vj!, (4)

where the order of quadrature is n, and the points vj and the weights wj are
constants, as explained and tabulated in the Appendix. Accuracy grows
quickly with order of quadrature n; no tested filter showed any improve-
ment beyond n 5 5.
A linear transformation extends this simple form to integrate r(v) over an

arbitrary interval (c, d). Change the variable v to the new variable t using
the linear relations

t 5
2v 2 ~d 1 c!

~d 2 c!
, v 5

~d 2 c!t 1 ~d 1 c!

2
, (5)

so that any v in the interval (c, d) maps to a value of t in the interval (21,
1):

E
c

d

r~v!dv 5
d 2 c

2
E

21

1

rS ~d 2 c!t 1 ~d 1 c!

2
Ddt. (6)

Similarly, each sample point vj in the range (21, 1) is mapped to a
corresponding sample point pj in the original range (c, d). Combine Equa-
tions (4) and (6) for a more general form of Gaussian quadrature:

E
c

d

r~v!dv >
d 2 c

2
O
j51

n

wjr~ pj!, where pj 5
~d 2 c!vj 1 ~d 1 c!

2
.

(7)

QUADRATURE PREFILTERING

Now we can use Gaussian quadrature to solve the unwieldy edge integral ei
of Equation (3). Rewrite the inner integral of Equation (3) by defining a line
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integral function L(x, y), which integrates the filter kernel h(x, y) along a
line of constant y between (0, y) and (x, y):

ei 5 K E
c

d

L~ fi~ y!, y!dy where L~ x, y! 5 E
0

x

h~ x, y!dx. (8)

Approximate this form of the ei integral using Gaussian quadrature as
shown in Equation (7):

ei 5 K E
c

d

L~ fi~ y!, y!d y > K
d 2 c

2
O
j51

n

wjL~ fi~ pj!, pj!. (9)

This is the final usable form of the edge integral equation. Each ei integral
is approximated as a weighted sum of a few line integrals L(fi(pj), pj). The
extent of the line integral function is no larger than the filter kernel h, and
is a two-dimensional function regardless of any asymmetry in h. In Figure
2, each edge integral finds the volume of the filter kernel within trapezoidal
limits defined by an edge’s endpoints (a, c) and (b, d). Gaussian quadrature
in Equation (9) approximates volume as the weighted sum of n line
integrals, each spanning a line between a sample point at (pj, f(pj)) and the
y-axis. Place sample points along the line between endpoints (a, c), (b, d), as
given in Equation (7).

SPEEDUP WITH LOOKUP TABLES

Directly evaluating Equation (9) is very inefficient even for low orders of
quadrature, but lookup tables boost the calculation speed with very little
loss of accuracy. We use a line integral table LT(s, t) to store values of the
line integral function L(x, y) at quantized (x, y) positions:

LT~s, t! 5 L~ xs, yt! 5 E
0

xs
h~ x, yt!dx. (10)

To build the LT table for the filter kernels used in this article we evaluated
the line integral of Equation (10) at every quantized position in the region
of support of the filter kernel. We used adaptive numerical integration to
get table entries accurate to at least five significant digits.
Quadrature prefiltering has two error sources: inaccuracies in the Gaus-

sian quadrature approximation, and input quantization error in the lookup
tables. Gaussian quadrature precision increases rapidly with the order of
quadrature, n; its solution is exact for any polynomial of degree 2n 1 1, so
even discontinuous kernels, such as the box filter, are well approximated
with n as small as 5. Errors due to sampling the line integral function L to
form the lookup table LT are more serious inasmuch as table size grows as
the square of the sampling rate. However, total error varies gracefully with
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the number of entries in the line integral table LT. Empirical tests on
several filter kernels showed LT tables of 32 3 32 entries per pixel were
sufficient for even very challenging images. Larger tables yielded negligible
improvements. As we reduced table size below 32 3 32 entries the RMS
error gradually increased.
Horizontal interpolation can also improve the accuracy of the LT table

output. Horizontally adjacent entries in the LT store results of line
integrals whose limits largely overlap; linearly interpolating between these
values can lead to a slight improvement in accuracy, especially for filter
kernels with regions of high gradient. Vertical interpolation is not recom-
mended because vertically adjacent entries in the LT table store line
integrals along nonoverlapping paths.

Computational Complexity

Computational complexity for quadrature prefiltering is quite favorable.
Quadrature of order n for each edge integral requires n linear interpola-
tions to find the sample points (symmetry in vj values can reduce this), n
lookups in the LT table, and an n-term weighted sum with fixed weights
wj. This is approximately n times as much arithmetic as required for box
prefiltering. For a polygon with k edges, computation is O(kn). As men-
tioned in the Introduction, quadrature prefiltering can be extended to the
case where Iideal(x, y) is not assumed constant in the region of integration.
For nonconstant Iideal(x, y), computing each edge integral takes n2-evalua-
tions of the filter kernel h, efficiently performed with table lookup, n2

multiplications of these values with Iideal(x, y), and n2 2 1 additions. For a
polygon with k edges and nonconstant Iideal(x, y), complexity is O(kn

2).

TESTING METHODS

Each prefilter method was tested for antialiasing performance with various
renderings of zone plate and checkerboard images. Plates 1–12 show 256 3
256 pixel images magnified by pixel replication to display distinct pixel
values. Test images were rendered with either box or sharp spline filter
kernels. The sharp spline filter is a 4 3 4 pixel continuous piecewise cubic
filter kernel first described by Parker et al. [1983] and exactly equivalent to
the parameterized filter of Mitchell and Netravali [1988] with settings B 5
0.0, C 5 1.0. The sharp spline filter is a good example of the superior
antialiasing kernels made practical by quadrature prefiltering. Mitchell
and Netravali’s piecewise cubic filter is intended for reconstruction filtering
(converting sampled data back to a continuous signal), but it also works
well for prefiltering. The filter is

—small: 4 3 4 pixel extent;
—smooth: continuous first derivative everywhere;
—adjustable: constants B and C can be chosen for best compromise between
aliasing, blur, anisotropy, and ringing;
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—separable: the filter kernel h(x, y) 5 k(x) z k(y) where

k~t! 5 5 ~12 2 9B 2 6C! ut u3 1 ~218 1 12B 1 6C! ut u2

1 ~6 2 2B! when ut u # 1,
~2B 2 6C! ut u3 1 ~6B 1 30C! ut2u 1 ~212B 2 48C! ut u

1 ~8B 1 24C! when 1 # ut u # 2,
0 when ut u . 2

—exactly equivalent to the sharp spline filter of Parker et al. [1983] when
B 5 0.0 and C 5 1.0.

The zone plate test pattern is an analytic two-dimensional chirp-like
function [Eq. (11)]. It is a circularly symmetric sinusoid whose frequency
term is zero at the center and which increases linearly with radial distance
to some maximum fmax. Its spatial frequency is essentially constant when
measured over any small neighborhood, and such neighborhoods contain all
orientations of all spatial frequencies between 0 and fmax at uniform
amplitude, as shown in Plate 1.

zone~r, u ! 5 5 for r # rmax 5 0.5F1 1 cosSp fmaxS r

rmax
D 2D G ,

else 5 0

6 .
(11)

Filtering a zone plate function with a small filter kernel vividly displays
the spectral response of the filter. Spatial frequencies strongly attenuated
by the filter appear neutral gray, and the distinctive zone plate pattern
appears as attenuation weakens, as shown in Plates 3 and 4.
Because our prefilter method does not accept continuous-valued func-

tions when applying the constant Iideal(x, y) assumption, Plates 1–7 used a
carefully constructed polygonal approximation of the zone plate pattern.
Each cycle of the zone( ) sinusoid is represented by eight concentric rings of
constant intensity that match the integral of the zone( ) function over the
extent of each ring. Each ring thickness is chosen to minimize intensity
deviations between the ring and the zone( ) function evaluated at ring
boundaries. Each ring consists of enough four- or five-sided polygons that
the radial deviation from a perfectly circular ring is always less than one
fourth of the ring thickness. The resulting approximation contained
148,000 polygons, and is virtually indistinguishable from the analytic
zone( ) function in the renderings.
The checkerboard test images (Plates 8–10) show a 3D-perspective view

of a planar mesh of square polygons embedded in the x–y plane. Each
polygon measures 1.0 3 1.0, each square intensity is either 0.0 or 1.0, and
the most distant row of polygons is at x 5 600. The images show a 43.6
degree field of view from a point 5 units above the xy origin looking along
the 1x-axis, tilted slightly downwards. The precise viewing parameters
are: view reference point (0.0, 0.0, 5.0), view plane normal (20.951495, 0.0,
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0.307665), perspective reference point (0.0, 0.0, 1.25), view up vector (0.0
0.0 1.0), and image plane extent (60.5, 60.5).

RESULTS

Error measurements on zone plate images strongly support our claims for
improved accuracy and reduced aliasing with quadrature prefiltering.
Table I gives error measurements for 10 different renderings of zone plate
patterns with fmax 5 2.5 cycles per pixel, all using the sharp spline filter
kernel. Note that smaller errors give more negative values in the table.
Boldface entries show that nominal quadrature prefiltering (n 5 5, LT
table of 32 3 32 entries) has less error than either uniform or jittered
supersampling for all supersampling rates up to 256 samples per pixel.
More reasonable supersampling rates are much less accurate.
Each of the error measurements in Table I resulted from comparing a

test image with a reference image. The reference image was computed by
the most accurate method available; we used quadrature prefiltering with
an extreme order of quadrature, n 5 10, and a large LT lookup table
holding 128 3 128 entries per pixel of filter kernel. We chose these values
by computing images with many different n and LT table size values, then
selecting the smallest values that showed no further image improvements.
All images were stored with excess precision, using 24 bits per color
component.
Images stored as RGB bytes (8 bits per color component) hid significant

amounts of error. Such images showed no significant improvement for n
greater than 5, or LT tables larger than 32 3 32, hence we consider these
values “nominal” quadrature prefiltering.
To compute RMS error, first find the pixel-by-pixel difference between

Table I. RMS Error for antialiasing methods

Antialiasing Method
Error with respect to best

prefiltering result

Nominal Quadrature
Prefiltering

225.82 dB

1 3 1 uniform
Supersampling

25.49 dB

2 3 2 “ “ “ 11.52** dB
4 3 4 “ “ “ 219.47 dB
8 3 8 “ “ “ 222.49 dB
16 3 16 “ “ “ 225.71 dB
2 3 2 jittered Supersampling 20.583 dB
4 3 4 “ “ “ 213.65 dB
8 3 8 “ “ “ 218.83 dB
16 3 16 “ “ “ 223.79 dB

** Aliased components had 180 degree phase shift; error was often larger than signal!
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the reference and test images, and remove its mean value

diff~n1, n2! 5 reference~n1, n2! 2 test~n1, n2!;

err~n1, n2! 5 diff~n1, n2! 2 O O diff~n1, n2!/~ pixel_count!.

Then compute the average squared error, and take its log10 multiplied by
10

avg5OO ~err~n1, n2!!2/~pixel_count!RMS_error_in_dB 5 10 z log10~Îavg!.

Images stored as RGB bytes (8 bits per color channel) hide a significant
amount of error. An error of only 1/254 at every pixel causes 224 dB image
error, but can be completely obscured by 8-bit quantizing. We used images
with 24-bit integer accuracy per pixel color field so that the error reported
in the tables is solely due to filtering—quantization errors are negligible.
Plates 1 and 2 display the zone plate pattern and demonstrate aliasing.

Both display a polygonal approximation of a zone plate pattern rendered by
point sampling at one sample per pixel. Plate 1 has fmax equal to the
Nyquist rates, or 0.5 cycles per pixel in both x and y directions; thus the
top, bottom, and sides of the pattern contain the highest frequency compo-
nents that can be point sampled without aliasing. Plate 2 shows a zone
plate sampled uniformly at one sample per pixel with fmax at 2.5 cycles per
pixel, or 5 times the Nyquist rate. Only the center circular pattern is part
of the original signal; all others are aliasing errors, and would be uniform
gray in an ideal antialiasing scheme. Plates 3–7 show the same zone plate
filtered with two types of prefilters, box and sharp spline, and with uniform
and jittered sampling.
Plates 3 and 4 display the shortcomings of box prefiltering when com-

pared to the sharp spline filter. Plates 3 and 4 use the same zone plate as
Plate 2. Plate 3 was rendered with box prefiltering that removed much of
the aliasing energy that dominates Plate 2, but still contains clearly visible
aliasing artifacts above the Nyquist rates; these fade slowly with increas-
ing frequency. Plate 4 shows the benefits of the more sophisticated sharp
spline filter of Parker et al. [1983] and Mitchell and Netravali [1988], and
was rendered with nominal quadrature prefiltering (n 5 5; 32 3 32 entry
LT table). The high frequency aliasing artifacts are dramatically reduced
by the filter’s superior stop band performance, yet high frequency compo-
nents below the Nyquist rates are clear and strong.
Plates 5–7 show the aliasing inherent in supersampling methods; com-

pare them with the quadrature prefiltered image in Plate 4. Plate 5 was
rendered using uniform supersampling, and jittered supersampling was
used in Plate 6. Both use four samples per pixel in a 2 3 2 pattern,
decimated to pixel rate using a discrete version of the sharp spline filter. At
frequencies around four times the Nyquist rates, Plate 5 shows strong
aliasing errors, which would also appear at all other multiples of 4X the
Nyquist rates (8X, 12X, 16X. . .) if the zone plate were larger. Any patho-
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logical images with high energy at any of these spatial frequencies would
be badly aliased if rendered with 2 3 2 supersampling, regardless of the
size or quality of the antialiasing filter. The energy of the strong, coherent
aliasing patterns shown in Plate 5 is dispersed throughout the spectrum as
high-frequency noise by the jittered supersampling used in Plate 6; the
amount of noise is surprisingly large when compared to quadrature prefil-
tering in Plate 4. Plate 7 was rendered using jittered supersampling at 256
samples per pixel. This horribly expensive rendering was at the lowest
supersampling rate that would reduce the image RMS error below that of
nominal quadrature filtering in Plate 4.
Plates 8–10 compare antialiasing methods on the commonly used check-

erboard pattern. The reference image was rendered with the sharp spline
filter kernel and quadrature prefiltering (n 5 10, 128 3 128 LT table). All
error measurements are with respect to this reference image. Plate 8 was
rendered using box prefiltering; it blurs detail near the horizon yet still
allows clear aliasing artifacts. Plate 9 was rendered with jittered super-
sampling at 16 samples per pixel and the sharp spline filter; it recovers
some detail lost in Plate 8, but shows strong noise at the horizon. The RMS
error for this image was 28.74 dB. Plate 9(a) was rendered with 4 3 4
uniform supersampling and the sharp spline filter. The RMS error was also
28.74 dB for this image. Plate 10 was rendered via nominal quadrature
prefiltering and the sharp spline filter (n 5 5, 32 3 32 LT table); it shows
fine detail near the horizon without the noise of Plate 9; its RMS error was
only 218.65 dB.
The superior antialiasing performance of quadrature prefiltering comes

at a surprisingly low computational cost. Plates 11 and 12 show images
computed with both nominal quadrature prefiltering and with jittered
supersampling, using a supersampling rate high enough to give RMS error
very close to that of quadrature prefiltering. The checkerboard in Plate 12
has fewer rows than those of Plates 8–10 to reduce the size of the geometric
database enough to eliminate virtual memory paging. This allowed us to
achieve more reliable timings. Table II shows the computation times for
each set of images using both types of filtering. For both images the RMS
error for prefiltering is lower than for supersampling but computation time
for prefiltering is still significantly less. All timings were performed on a 90
MHz Pentium processor.

Table II. Computation time for prefiltering versus supersampling

Image Jittered Supersampling

Nominal
Prefiltering (n 5 5,
32 3 32 LT table)

number of
samples/pixel time (secs) RMS error (dB) time

RMS error
(dB)

skull 36 64 222.093 49 223.189
checkerboard 100 241 215.211 115 215.748
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Plate 1. The zone plate pattern. f max 5 .5 cycles/pixel, point sampled once per pixel.

Plate 2. Zone plate aliasing artifacts. Zone plate with f max of 2.5 cycles/pixel, or 5 times the
Nyquist rates, point sampled once per pixel. Only the center circular pattern is part of the
original signal; all others are aliasing errors, and would be replaced by uniform gray in an
ideal antialiasing scheme.
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Plate 3. Box prefiltering. Zone plate with fmax of 2.5 cycles/pixel rendered with box prefilter-
ing; note poor high frequency response and persistent aliased components.

Plate 4. Sharp spline prefiltering. Zone plate with fmax of 2.5 cycles/pixel, nominal quadra-
ture prefiltering (n 5 5, 32 3 32 LT table) with sharp spline prefilter; note strong high
frequency response and strong aliasing suppression.
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Plate 5. Aliasing in uniform supersampling (4 samples/pixel). Zone plate with fmax 5 2.5
cycles/pixel, rendered with uniform supersampling and discrete sharp spline filter, allows
strong aliasing of all frequencies near any multiple of 2.0 cycles/pixel.

Plate 6. Aliasing in jittered supersampling (4 samples/pixel). Zone plate with fmax 5 2.5
cycles/pixel, rendered with jittered supersampling and discrete sharp spline filter converts
aliasing energy in Plate 5 to high frequency noise.
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Plate 7. Jittered supersampling (256 samples/pixel). Zone plate with fmax 5 2.5 cycles/pixel;
this matches the SNR of quadrature prefiltering in Plate 4.

Plate 8. Box prefiltering a checkerboard. Box prefiltering causes aliasing and blurring at
horizon.
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Plate 9. Jittered supersampling (16 samples/pixel).

Plate 9a. Uniform sampling (16 samples/pixel). 4 3 4 uniform supersampling with sharp
spline filter.
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Plate 10. Quadrature prefiltering. Nominal quadrature prefiltering (n 5 5, 32 3 32 LT table)
with sharp spline filter is sharper and less noisy than either jitter or uniform supersampling.

Plate 11. Skull image used in timing comparisons of prefiltering and jittered supersampling.
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CONCLUSION

Quadrature prefiltering is an efficient, robust, and relatively simple new
prefiltering algorithm. It allows arbitrary filter kernels but only requires a
two-dimensional lookup table, and is only slightly more complicated to
implement than box prefiltering. Quadrature prefiltering with a good filter
kernel dramatically reduces aliasing artifacts. Very high supersampling
rates are necessary to match the performance of quadrature prefiltering.
Computation times for quadrature prefiltering are significantly faster than
for supersampling at rates high enough to give comparable aliasing arti-
facts.

APPENDIX: CONSTANTS FOR GAUSSIAN QUADRATURE

Gaussian quadrature of degree n approximates the solution of a definite
integral of any smooth function r(v) on the interval (21, 1) as the weighted
sum of the values of r(v) at n sample points vj using weights wj. These
sample points and weights are constants, and the approximation is exact if

Plate 12. Checkboard image. Used in timing comparisons of prefiltering and jittered super-
sampling. This checkerboard image has fewer rows than the checkerboard image of Plates 8
through 10.
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r(v) is a polynomial of degree 2 n 2 1 or less:

E
21

1

r~v!dv > O
j51

n

wjr~vj!. (12)

The n sample points vj are the roots of the nth Legendre polynomial
Pn(v), which is generated recursively:

P0~v! 5 0; P1~v! 5 v;

· · · Pn12~v! 5
2n 1 3

n 1 2
vPn11~v! 2

n 1 1

n 1 2
Pn~v!; · · · , n $ 0. (13)

The n weights wj are also found from these roots vj by solving

wj 5 E
21

1 P
k51
kÞj

n ~v 2 vk!

~vj 2 vk!
dv. (14)

Table III. Gaussian quadrature points and weights

Degree n Points vj Weights wj

2 0.5773502692 1.0
20.5773502692 1.0

3 0.7745966692 0.5555555556
0.0 0.8888888889

20.7745966692 0.5555555556
4 0.8611363116 0.3478548451

0.3399810436 0.6521451549
20.3399810436 0.6521451549
20.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0 0.5688888889

20.5384693101 0.4786286705
20.9061798459 0.2369268850

Degree n Points vj Weights wj

10 0.97939065285 0.0666713443
0.8650633666 0.1494513491
0.6794095682 0.2190863625
0.4339539410 0.2692667193
0.1488743389 0.2955242247

20.1488743389 0.2955242247
20.4339539410 0.2692667193
20.6794095682 0.2190863625
20.8650633666 0.1494513491
20.97939065285 0.0666713443
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These values are extensively tabulated and published; the values used to
render our images are listed in Table III. The odd symmetry of vj values
and even symmetry of wj values are helpful in implementation; also note
that wj values sum to 2.0. See Burden and Faires [1989] for a detailed
tutorial, and see Stroud and Secrest [1966] for more extensive tables.
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