
Interactive Volume Rendering

L e e W e s t o v e r

D e p a r t m e n t o f C o m p u t e r Sc i ence
T h e Un ive r s i t y o f N o r t h Ca ro l i na at C h a p e l Hi l l

C h a p e l Hil l , N o r t h Carol ina , 2 7 5 9 9 - 3 1 7 5
U S A

ABSTRACT

Volume rendering is the display of data sampled in three
dimensions. Traditionally, visualization of such data has
been through conventional computer graphics line or
surface drawing methods preceded by processes that
coerce the sampled data into a form suitable for display.
This approach is being replaced by new techniques
which operate directly on the three dimensional samples
to avoid the artifacts introduced by the use of conven-
tional graphics primitives.

Volume rendering is a compute-intensive operation.
This paper discusses an approach for volume rendering
in which interactive speed is achieved through a paral-
lelizable forward mapping algorithm, successive
refinement, table driven mappings for shading and filter-
ing, and the avoidance of complex machine
classification of the data.

Since the renderer is interactive, users are able to
specify application specific mapping functions on-the-
fly. Current applications include molecular modeling,
geology, computed tomography, and astronomy.

KEYWORDS: 3D Image, Volume Rendering, Algo-
rithms.

INTRODUCTION

A common data type in scientific computing is a regular
thrcc-dimensionul grid of sample points. A single data
point may be a scalar, as in electron density maps, or a
vector, as in the results of fluid flow simulation. Other
examples include seismic studies for oil exploration,
light wavelength data for galaxies, and stacks of

computed tomography scans, for medical imaging.
Direct display of volume data is called volume render-
ing. Current techniques are too slow to be interactive
because renderers either tri-linearly interpolate many
points along each sight ray or perform complicated
polygon fitting for each point neighborhood. Since typi-
cal data range from 64 by 64 by 64 data points to 256 by
256 by 256 data points, the sheer number of samples
amplifies any inefficiency of the display algorithm. In a
non-interactive mode a user guesses at viewing and
shading parameters and renders an image that can take
anywhere from 5 minutes to many hours to compute.
When the image is completed, the user may change the
input parameters and try again, iterating until a satisfac-
tory image is generated. While this batch method of
volume rendering is satisfactory for final presentation
image generation, it does not lend itself to data explora-
tion. The length of time between i ter~ons makes exper-
imentation painful and breaks idea continuity.

The goal of this work is to design a system for interac-
tive exploration of volume data with enough flexibility
to encourage the user to try numerous and possibly
unusual mappings. The renderer uses only table driven
interpretation and classification so the user can easily
understand how the data is being mapped to the final
imagE. The user must be able to control each and every
step in the generation process. When the user changes
an input viewing parameter, he should immediately
(with in 10 seconds) see the change. The altered image
may not be the final image, but it should be adequate for
the user to quickly steer through his data [Brooks 86]
[Greenberg 86].

PREVIOUS WORK

Early attempts to visualize volume data often failed
because the large data size and the massive amounts of
calculations needed. Because of the availability of
polygon renderers and line drawing displays, the volume
rendering problem was often coerced into one of these
problems by preprocessing the data. Contour maps
would display a line drawing connection of equal valued
data points [Wright 72] [Williams 821. Alternatively,
these contours were triangulated to form polygons that

CH Volume Visualization Workshop 9

were then fed into polygon engines [Fuchs 77]
[Ganapathy 82]. Other algorithms were developed for
special classes of point data such as the rings of Saturn
[Blinn 82], clouds [Kajiya 84], meteorological data
[Hibbard 86], and points as primitives [Reeves 83]
[I.~voy 85].

Recently, the advances in machine speed and memory
capacity have allowed researchers to eliminate the inter-
mediate surface model and direcdy display volume data.
These approaches typically fall into one of two
categories, backward mapping and forward mapping.

Backward mapping algorithms are those algorithms that
map the image plane into the data, commonly called ray
tracing. For each pixel in the final image, the renderer
shoots rays from the pixel into the data and intersects
that ray with each data point until either the ray exits the
volume or the opacity accumulates enough density to
become opaque [VanHook 86] [Levoy 88] [Sabella 88]
fUpson 88].

Forward mapping algorithms are those algorithms that
directly map the data onto the image plane. Examples in
surface graphics include the Z-buffer and the painter's
algorithm. For each data point, the renderer maps the
point onto the image plane and then adds its contribution
to the accumulating image. This accumulation can be
either back-to-front or front-to-back. The image is com-
plete when each data point is added to the screen or the
image becomes opaque and new samples can have no
further effect on the final result [Drebin 88] [Upson 88].

DESIGN TRADEOFFS

The main goal of this work is to find an algorithm suit-
able for interactive volume rendering. A parallel algo-
rithm is desired because of the large amount of computa-
tion required in the volume rendering process. Simi-
larly, as much of the rendering process as possible
should be table driven.

For an arbitrary view, a naive parallel backward map-
ping algorithm requires that the entire data volume be
replicated at each parallel computation node. More
sophisticated methods may relieve some of this replica-
tion but will not eliminate it. Since a forward mapping
algorithm can treat each data point in isolation, there is
no need to replicate any of the input volume in a parallel
system.

There are two places where discrete samples may be
reconstructed in the volume rendering process. First, the
renderer does volume space reconstruction where the
three-dimensional individual input samples are recon-
structed into a three-dimensional continuous function.
Second, the renderer does image space reconstruction
where individual image space intermediate samples are
reconstructed into viewable samples that make the final

image.

x x

Image] ,, x x

i

Reconstruction I
I ~ x x x

x II x

xTL---

Volume
Reconstruction

Figure 1. Reconstruction

In backward mapping algorithms input values rarely fall
exactly along a ray. Consequently, a continuous approx-
imation of the volume data is generated near a sample
point using tri-linear interpolation. Image reconstruc-
tion is required when the intermediate samples do not
fall exactly on output pixel centers. This occurs when
anti-aliasing is done by uniform or stochastic super-
sampling. (If all rays originate at exact pixel centers,
the second reconstruction step becomes the identity
mapping.) Anti-aliasing is required in a backward map-
ping algorithm because M-linear interpolation is a poor
reconstruction kernel [Levoy 88].

A forward mapping algorithm can perform the volume
space reconstruction in two-space because the data
points themselves are fed through the rendering pipeline
and only an image space footprint of the data point need
be considered. Furthermore, the image space reconstruc-
tion is not required because the footprint function is a
continuous function and needs only to be sampled.
Detail of this process appear later in the paper.

A problem for both forward and backward mapping
algorithms is perspective. For a perspective view, the
sampling rate of the input data with respect to the screen
changes with depth. However, orthographic views of
volume data are useful in their own right and often
desired. Since perspective views are not critical for a
wide range of applications, the renderer described in this
paper only generates orthographic views at this time.

For maximum speed the renderer uses table driven
operations as often as possible. For example, the recon-
struction process is driven by filter tables and the shad-
ing process is driven by four shading tables. The
renderer should not make any binary classification or
shading decisions. All decisions should be probabilistic
or weighted [Levoy 88] [Drebin 88]. The use of shading
tables does not enforce this rule but certainly supports it.

10 CH Volume Visualization Workshop

Since a forward mapping algorithm allows parallel
implementation without input d~t~ replication, allows
volume reconstruction to occur in two-dimensional
image space, and provides speed and flexibility through
table driven shading and reconstruction, the renderer
presented here uses a table driven forward mapping
algorithm.

ALGORITHM

The algorithm consists of three main parts: the viewing
transformation, signal reconstruction, and converting an
input sample into a shaded intermediate sample.

Raw Data and [~:=l[[I
Gradient Operator

Transform

Table Lookups I

Shade

Reconstruct

Final Image

Figure 2. Block Diagram

Pipeline Structure

The path through the rendering pipeline is to take an
input sample packet,

density value
gradient strength

gradient <i, j, k> direction
grid <i, j, k>

perform the grid space to screen space mapping which
converts the grid <i, j, k> into screen <x, y, z>, and
forms a packet that consists of:

density value
gradient strength

gradient <i, j, k> direction
screen <x, y, z>

The packet is then shaded, converting the density value
and gradient information into red, green, blue and alpha
values forming a packet that consists of:

red]
green
blue

alpha
~creen <x, y, z>

This packet is then passed through a reconstruction step

and combined into the image buffer. When all input
samples have been processed the image is complete.

The following sections describe these processing steps
in detail.

TRANSFORMATIONS AND RECONSTRUCTION

Screen Mapping

Since the input volume is a regular three dimensional
grid and the renderer only generates orthographic views,
a digital differential analyzer (DDA) can incrementally
map each data point from grid space to the screen space.

= I dyldi dy/dj dyldk
L dzldi dz/dj dzldk

where dA/dB denotes the change in the A direction in
image space for each step in the B direction in grid
space.

Thus, the step sizes in each of x, y, and z for each input
i, j, and k can be read directly from the transformation
matrix since it is made up of only rotations and scaling.
By inspecting the sign and magnitude of these values,
the renderer can determine a traversal that guarantees a
back-to-front ordering or a front-to-back ordering. Each
ordering has its advantages. The back-to-front ordering
allows the user to watch the image as it is formed and
see features which later may be obscured. Once these
deltas are known and the ordering is known, the first
input point is transformed with a full matrix multiplica-
tion. This is the origin for the DDA. The renderer then
just adds the appropriate delta as it walks through the
input volume. The image <x, y, z> for each intermediate
sample are used to build the image at the end of the
rendering pipeline.

Recohstruction

There is one stage in the volume rendering process
where the renderer must reconstruct a continuous signal
from discrete samples. Image plane samples are gen-
erated by sampling the discrete input volume. Since
resampling a sampled signal is undefined, a continuous
signal needs to be reconstructed from the original data
samples prior to resarnpling. The sampled signal can be
thought of the product of a comb function and some con-
tinuous signal. The ideal way to reconslruct such a sig-
nal is by convolving a sine function with the sampled
data. For a band limited original signal, the convolution
can exactly reconstruct the original signal. Similar to
the way surface graphics image reconstruction can be
either pixel driven or polygon fragment driven [Car-
penter 84] [Abram 85], volume graphics reconstruction
can either be pixel driven or data sample driven.

CH Volume Visualization Workshop 11

A backward mapping algorithm is pixel driven and can
have problems with the volume signal reconstruction.
The volume convolution between a three-dimensional
sine function and the input volume is an expensive
operation. For speed considerations, most forward map-
ping algorithms use tri-linear interpolation to generate
points that lie exactly along a ray. However tri-linear
interpolation is an ineffective reconstruction kernel
which necessitates over sampling and a second low pass
filtering step of the generated samples.

Instead of trying to determine which part of the input
volume affects a given pixel, the forward mapping algo-
rithm turns the problem "inside out" and determines
what output pixels a given sample can effect. Since the
data points themselves are the input samples there is no
need to generate interpolated values. This does not
alleviate the need for volume reconstruction, it just
moves the problem to a later stage of the rendering pipe-
line when a sample is added to the final image.

Reconstruction is the process of convolving the recon-
struction kernel with the sampled signal. The volume
reconstruction equation is:

signal 3o =

~ h v (u - x , v - y , w - z) ~ 8(x,y,z) p(x,y,z) dudvdw

where hvO denotes the volume reconstruction kernel, p
denotes the density function, and ~ 5 denotes the comb
function.

Moving the summation outside the integral and evaluat-
ing the integral at point <x, y, z> results in:

signalao(x,y,z) = ~ hv (ix-x, iy-y,iz-z) p (i)
i ~ V o l

where i ranges over the input samples that lie within the
kernel centered at <x, y, z>.

Instead of considering how multiple samples effect a
point, consider how a sample can affect many points in
space. The effect at a point <x, y, z> by a data sample
<i> is:

effect~(x,y,z) = p (i) h v (i : x , i y - y , i , - z)

Therefore, the renderer can treat each data sample indi-
vidually and spread its effect to the output pixels.

Combining
Visibility in and intensity from density functions is often
modeled by a scattering equation which integrates
brightness along the view direction [Blinn 82] [Kajiya
84] [Sabella 88]. An effective approximation to a
scattering equation is to use image composition func-
tions [Porter 84]. Since the composition functions
require discrete layers, the renderer needs to integrate

each sample along the view direction. Therefore the
sample is projected onto the image plane. Projecting the
sample onto the image plane at pixel <x, y> is:

effecti(x,y) = J hv(iz-x,iy-y,w) p (i) dw

Since p is independent of z, p can be moved outside the
integral:

effecti(x,y) = p (i) S hv(x-i,, ,y-iy,w) dw

Notice that the integral is independent of the sample's
density. Since it only depends on the sample's <x, y>
projected location, the function footprint can be defined
as follows:

footprint (x,y) = 5 hv(x,y,w) dw

where <x,y> denotes the displacement of an image
sample from the center of the volume reconsla'uction
kernel's <x, y> projection.

Now the renderer adds the point to the image buffer.
Since the footprint function is continuous in <x, y>,
there is no need to reconstruct this function. It only
needs to be sampled at pixel centers to determine the
footprint's contribution to a pixel,

weight (u,v)e = footprint (Px-u,Py-v)

where <u,v > denotes the <x, y> of a sample's image
plane projection and P denotes the pixel in question.

If the three-dimensional volume kernel is rotationally
symmetric, the footprint function can be precomputed
for all viewpoints and stored in a table in a preprocess-
ing step. If not, the footprint function can be computed
once per view and stored in a table. In either case the
table is indexed by the fractional offset of a sample's
projection from the pixel center and returns the weight
for each pixel in the neighborhood of a sample's projec-
tion. The sample's <red, green, blue, alpha> (deter-
mined by the shader) is then weighted by the table value
and added to the image buffer. The process of table
lookup, weighting, and combining is called splatting.

Once the point's image plane footprint is determined, it
is added to the image buffer. The combining rules are
different for a front-to-back and a back-to-front traver-
sal, but these rules are equivalent (in the absence of
roundofferrors).

For a front-to-back traversal the formula are:

It = Ic + ((1 - A t) * (In*An))

12 CH Volume Visualization Workshop

Ao = Ac + ((1-At) * An)

For a back-to-front traversal the formula are:

Io = ((1-An)*lc) + (I,~*A,,)

Ao = ((1-A.)*Ac) + A,,

where I denotes the intensity, A denotes the opacity, o
denotes the output, c denotes what is already in the
image buffer, and n denotes the new point.

SHADING

Provided the renderer's shader uses only information
that is either part of the sample item or can be generated
once in a preprocessing step, any shader can fit in the
forward mapping algorithm. For speed considerations,
the renderer in the current system uses a table driven
shader that is made up of four parts: emittance, diffuse
reflection, specular reflection, and opacity calculations.
Conceptually a shaded object is a reflective light emit-
ting semi-transparent blob. This shader requires that the
density, gradient strength and gradient direction be
known for each input sample.

Since the gradient operator requires knowledge of
neighboring samples, gradients are generated in a
preprocessing step. The result of the preprocessing step
is a 32 bit packet made up of 8 bits for density, 8 bits for
gradient strength, and 5 bits each for gradient x, y, and z
direction (there is 1 bit leftover). While many gradient
operators are used in similar applications [Horn 81]
[VanHook 86] [Drebin 88] the renderer uses the follow-
ing:

gradienti(i , j ,k) = data (i +l, j ,k) - data (i - l , j , k)

gradient / (i , j ,k) = data (i , j + 1,k) - data (i , j - l , k)

gradientk(i , j ,k) = data (i , j ,k + 1) - data (i , j , k - 1)

The shading model uses four tables: a table to determine
emitted color, a table to determine reflected color, a
table to determine opacity and a table to modulate the
opacity. Each table has 256 entries and the table can be
indexed by any value available in a sample packet. The
indices select the corresponding shading value in the
following shading rules. In addition, the emitted,
diffuse, or specular component can be set to zero and the
modulation component can be set to one, effectively
turning off that component

The emittance rule for shading is:

Ic~t = Table,m~t[index, mit]

The diffuse rule for shading is:

Iai# = Tabler,~[indexr,yt] * D O T (L , G)

The specular rule for shading is:

In,,c = Tabler,~[index,,~] * D O T (H , G) ~

The opacity rule for shading is:

Ar~u = Tableor,~ [indexot~] * Table~,~, [index~,t ,]

The final intensity is:

l , . t , = I . ~ , + I ,~. + I.v.~

where 1 denotes the intensity, A denotes the opacity, L
denotes the light vector, G denotes the gradient direc-
tion, H denotes the vector half way between the eye vec-
tor and the light vector, and n denotes the specular
power. Intensity has three components: red, green and
blue. Each intensity component is clamped to fall
between 0 and 255.

Since the color specified in the tables is the color for a
fully opaque sample, the color is attenuated by the opa-
city value which occurs during the combining stage.

An example of a use for the opacity modulation table is
surface enhancement. If the table is loaded with a ramp
and the gradient strength is used to select a value, the
effect is to increase the opacity of samples that lie
between two samples that are drastically different, thus
bringing out pseudo surfaces. Another example is to
index the opacity modulation table with the packet's z
value for pseudo depth queuing. Other interesting
effects are achieved by selecting emitted and reflected
color with different packet elements. For example,
choosing emitted light based on gradient strength and
reflected light based on density value is a useful way to
view molecular electron density volumes.

INTERAC'nON

User Interface

The user has many interactive controls for image gen-
eration.

For shading, the user selects the emittance and
reflectance tables which are full color tables and opacity
and the modulation tables which are scalar tables. The
contents of the four tables are displayed on the user's
screen. The user also has control over which parts of the
sample packet are used to index each table by a shading
cross-bar selector. For lighfng, the user has the option
of having the light direction fixed to the world coordi-
nate system or fixed to the grid coordinate system.

For viewing parameters, the user uses a virtual track-ball
to select the view direction. In addition, the user selects
the high and low <i, j, k> bounds for his data. This
allows clipping in grid space. The user specifies which
grid <i, j, k> appears in the center of the final image.

CH Volume Visualization Workshop 13

The user can also zoom into or out of the data. The user
selects whether to generate the images in a back-to-front
or a front-to-back ordering.

Successive Refinement

A way to improve the update rate of image generation is
to display partial images during image generation. This
allows the user to view the data with the current parame-
ters as quickly as possible. If the user does not change
the viewing parameters, the image continues to improve
while the user watches the display [Bergman 86]. The
successive refinement takes two forms.

First, the splat buffer is visible to the user at all times, so
he can see any partial image. If the view displayed is not
to his liking, he can change a view parameter without
waiting for the image to complete and image generation
starts over.

Second, different features of the rendering pipeline take
different amounts of time to compute. The most impor-
tant item effecting rendering time is the number of sam-
pie packets that are passed down the rendering pipeline.
Another place to gain speed is to skip formal reconstruc-
tion and simply map each output sample packet to its
nearest pixel. In addition, the different components of
the shading equation take different amounts of time to
compute, and can be turned on in succession. Therefore,
there are three axes along which to refine an image:
input resolution, reconstruction and shading. Currently,
while input parameters remain unchanged the renderer
starts with a low resolution copy of the input, moves to a
middle resolution copy, then moves to the full resolution
copy. It then turns on reconstruction. Once this image
completes the diffuse and specular part of the shading
model are turned on.

The low resolution version of the data is achieved by
visiting only every 4th input sample in each grid direc-
tion. With a three-dimensional input volume this reduces
the number of samples for the pipeline by a factor of 64.
The middle resolution version is achieved by visiting
every other input sample. This reduces the number of
input points by a factor of 8.

PARALLEL IMPLEMENTATION

A parallel version of the forward mapping algorithm has
been implemented. The system consists of a client, a
splat server, and a set of map/shade servers. The splat
server is currently a TAAC-1. It receives shaded packets
from the client and reconstructs and combines the pack-
ets into the image buffer. The client is currently a SUN-
3/180C with 16 MB of main memory. It runs the user
interface, controls each map/shade server's actions, col-
lects shaded packets from each map/shade server and
down loads these packets into the splat server. The
map/shade servers are a run-time configurable collection

of SUN-3s and SUN-4s with anywhere from 4 to 32 MB
of main memory each, At the command of the client,
each map/shade server reads a sub-cube of the input
volume off disk. When the client tells each map/shade
server to render an image, the map/shade server renders
its sub-cube, generating shaded packets that it sends to
the client in groups.

The only complicated part of the parallel version of the
forward mapping algorithm is that the splat server must
guarantee a back-to-front or a front-to-back traversal of
the shaded packets from the multiple map/shade servers.
This is done with a sorted linked-list of the map/shade
server packet buffers.

RESULTS

Timing Tests

Both the single processor version and the parallel ver-
sion of the algorithm were used to generate six images,
one for each step in successive refinement.

IMAGE STEP IN REFINEMENT

A
B
C
D
E
F

low resolution version of the data
middle resolution version of the data
full resolution version of the data
full reconstruction
diffuse portion of the shading model
specular portion of the shading model

The timing volume data was a 96 by 128 by 113 com-
puted tomography study of a human head. Color plates 1
and 2 contain the six result images. The single Sun-3
was a Sun-3/60M with 8 MB of main memory. The sin-
gle Sun-4 was a Sun-4/280S with 64 MB of main
memory. The single TAAC-1 was in a Sun-3/180 with
16 MB of main memory. The four Sun-3s were all Sun-
3/60M with 8 MB of main memory. The four Sun-4s
were all Sun-4/280S with 32 MB of main memory. All
times are in seconds.

MACHINES A B C D E F

TAAC- 1 3 9 65 165 179 182

1 Sun-3 20 60 363 733 843 898
4 Sun-3 3 21 141 172 205 223

1 Sun-4 8 28 181 481 484 522
4 Sun-4 3 11 89 108 112 116

Sample Images

Included are 16 sample images that display the results at
each step in the refinement process as well as the output
of the algorithm on various applications. On all image,
the boundaries of the input volume is displayed as white
edges.

14 CH Volume Visualization Workshop

DATA SlZl~ DIMENSIONS
CT of head 96 128 113 Three Spatial
P-orbital 64 64 64 Three Spatial
Transfer RNA 64 64 64 Three Spatial
Hemoglobin 64 64 64 Three Spatial
Super-oxide 64 64 64 Three Frequency
Galaxy 100 1130 80 Two Spatial and

Light Wavelength
Seismic 64 64 64 Three Spatial

Color plate 1 and color plate 2 each contain four images
of the computed tomography data set used in the timing
tests. The four images of color plate 1 are the first four
steps in the refinement process. The upper left image is
from the low resolution version of the data. The upper
right image is from the middle resolution version of the
data. The lower left image is from the full resolution
version of the data. The lower fight image is from the
full resolution version of the data with full reconstruc-
tion. The upper two images of color plate 2 are also
from the timing tests. The left image is with the diffuse
portion of the shading model. The right image is with
both the diffuse and specular portion of the shading
model. All these images were generated with the same
shading tables, chosen to bring out the skin surface. The
bottom two images are other views of the same data set.
The left image was made with tables that were chosen to
display bone. In addition, the reflection table was loaded
with green to emphasize the rettected light. The right
image has the right part of the head clipped away and
was generated with tables that emphasize surfaces by
using the opacity modulation table. Note the detail in
both the bone surfaces and the skin-to-air interface
including the nasal sinuses and throat regions.

Color plate 3 contains four images of electron density
data. The upper left image is an image of the p-orbitals
of copper chloride. Note the soft bonding between the
lobes where the electrons are shared. In the upper right
image of transfer RNA, the volume is colored base on
gradient strength to bring out the atom boundaries. The
lower left image is an image of a synthetic hemoglobin
density map. The map was generated from known atom
centers, with bonds added to the volume data in a
separate process. Since electron density is directly
related to atom type and in the synthetic case these den-
sity can be determined for each atom type, the shading
tables were chosen to color the density by atom type:
green for carbon, blue for nitrogen, red for oxygen, and
yellow for sulfur. The lower fight image is an image of
the structure factors for super-oxide dismutase. The
points were colored by phase angle and the opacity
depends the intensity.

Color plate 4 contains four images: two of a Fabry-Perot
map of a galaxy and two of a synthetic seismic study.

Both the top imagos and both bottom images were gen-
orated with the same shading parameters and tables.
The only difference in the fight and left image in each
case is a rotation.

ACKNOWLEDGEMENTS

I would like to thank Apple Computer Inc.,
Schlumberger-Doll Research, and Sun Microsystems for
supporting this research. In addition, I would like to
thank my advisor, Turner Whitted, for our numerous dis-
cussions and his helpful insight. I would also like to
thank Mark Harris for his willingness to be a guinea pig
on many versions of the system. The seismic data is
courtesy of Schlumberger-DoU Research. The super-
oxide dismutase data and the copper chloride p-orbitals
data courtesy of Michael Pique of the Scripts Institute.
The transfer RNA data and the hemoglobin data cour-
tesy of Frank Hage of the Biochemistry Department of
the University of Noah Carolina at Chapel Hill. The
computed tomogaphy data courtesy of Radiation
Oncology of the the University of North Carolina at
Chapel Hill. The Fabry-Perot data courtesy of Gerald
Cecil of the Institute for Advanced Study at Princeton.

REFERENCES

Abram, G.D., L.A. Westovor, J.T. Whitted, [1985]
"Efficient Alias-Free Rondering Using Bit-Masks and
Look-Up Tables", Computer Graphics, vol. 19, no. 3,
July 1985.

Bergman, L., H. Fuchs, E. Grant, S. Spach, [1986]
"Image Rendering by Adaptive Refinement", Computer
Graphics, vol. 20, no. 4, August 1986.

Blinn, J.F., [1982] "Light Reflection Functions for
Simulation for Clouds and Dusty Surfaces", Computer
Graphics, vol. 16, no. 3, July 1982.

Brooks Jr., F.P., [1986] "'Interactive Graphics and
Supercomputer Debate", 1986 Workshop on Interactive
3D Graphics, October 1986.

Carpenter, L., [1984] "The A-buffer, and Antialiased
Hidden Surface Method", Computer Graphics, vol. 18,
no. 3, July 1984.

Drebin, R.A., L. Carpenter, P. Hanrahan, [1988]
"Volume Rendering", Computer Graphics, vol. 22, no.
4, August 1988.

Fuchs, H., Z.M. Kedem, S.P. Uselton, [1977] "'Optimal
Surface Reconstruction from Planar Contours", Com-
munication of the ACM, vol. 20, no. 10, October 1977.

Ganapathy, S., T.G. Dennehy, [1982] "'A New General
Triangulation Method for Planar Contours", Computer
Graphics, vol. 16, no. 3, July 1982.

Greenberg, D.P., [1986] "Scientist Wants a Window
into the Database", Panel on Graphics, Image

CH Volume Visualization Workshop 15

Processing, and Workstations, October, 1986.

Hibbard, W.L., [1986] "4-D Display of Meteorological
Data", 1986 Workshop on Interactive 3D Graphics,
October 1986.

Horn, B.K.P, [1981] "Hill Shading and the Reflectance
Map" Proceedings of the IEEE, vol. 69, no. 1, January
1981.

Kajiya, J.T., B. Von Herzen, [1984] "Ray Tracing
Volume Densities", Computer Graphics, vol. 18, no. 3,
July 1984.

Lenz, R., B. Gudnumdsson, B. Lindskog, P.E. Daniels-
son, [1986] "Display of Density Volumes", IEEE Com-
puter Graphics and Applications, vol. 6, no. 7, July
1986.

Levoy, M.S., J.T. Whitted, [1985] "The Use of Points as
a Display Primitive", Technical Report #85-022,
University of North Carolina, Chapel Hill, NC, 1985.

Levoy, M.S., [1988] "Volume Rendering: Display of
Surfaces from Volume Data", IEEE Computer Graphics
and Applications, vol. 8, no. 3, May 1988.

Reeves, W.T., [1983] "Particle Systems -- A Technique
for Modeling a Class of Fuzzy Objects", Computer
Graphics, vol. 17, no. 3, July, 1983.

Porter, T., T Duff, [1984] "Compositing Digital Images"
Computer Graphics, vol. 18, no. 3, July 1984.

Sabella, P., [1988] "A Rendering Algorithm for Visual-
izing 3D Scalar Data" Computer Graphics, vol. 22, no.
4, August 1988.

Upson, C., K Keller, [1988] "VBUFFER: Visible
Volume Rendering" Computer Graphics, vol. 22, no. 4,
August 1988.

VanHook, T., [1986] Personal Communication. Sep-
tember 1986.

Williams, T.V., [1982] "'A Man-Machine Interface for
Interpreting Electron Density Maps", Ph.D. dissertation,
University of North Carolina, Chapel Hill, NC, 1982.

Wright, W.V., [1972] "An Interactive Computer Graph-
ics System for Molecular Studies", Ph.D. dissertation,
University of North Carolina, Chapel Hill, NC, 1972.

16 CH Volume Visualization Workshop

Chapel Hill Workshop

Westover. Color Plate 1.

Westover. Color Plate 2.

Volume Visualization

Westover. Color Plate 3.

Westover. Color Plate 4.

