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ABSTRACT 

Volume rendering is the display of data sampled in three 
dimensions. Traditionally, visualization of such data has 
been through conventional computer graphics line or 
surface drawing methods preceded by processes that 
coerce the sampled data into a form suitable for display. 
This approach is being replaced by new techniques 
which operate directly on the three dimensional samples 
to avoid the artifacts introduced by the use of conven- 
tional graphics primitives. 

Volume rendering is a compute-intensive operation. 
This paper discusses an approach for volume rendering 
in which interactive speed is achieved through a paral- 
lelizable forward mapping algorithm, successive 
refinement, table driven mappings for shading and filter- 
ing, and the avoidance of complex machine 
classification of the data. 

Since the renderer is interactive, users are able to 
specify application specific mapping functions on-the- 
fly. Current applications include molecular modeling, 
geology, computed tomography, and astronomy. 

KEYWORDS: 3D Image, Volume Rendering, Algo- 
rithms. 

INTRODUCTION 

A common data type in scientific computing is a regular 
thrcc-dimensionul grid of sample points. A single data 
point may be a scalar, as in electron density maps, or a 
vector, as in the results of fluid flow simulation. Other 
examples include seismic studies for oil exploration, 
light wavelength data for galaxies, and stacks of 

computed tomography scans, for medical imaging. 
Direct display of volume data is called volume render- 
ing. Current techniques are too slow to be interactive 
because renderers either tri-linearly interpolate many 
points along each sight ray or perform complicated 
polygon fitting for each point neighborhood. Since typi- 
cal data range from 64 by 64 by 64 data points to 256 by 
256 by 256 data points, the sheer number of samples 
amplifies any inefficiency of the display algorithm. In a 
non-interactive mode a user guesses at viewing and 
shading parameters and renders an image that can take 
anywhere from 5 minutes to many hours to compute. 
When the image is completed, the user may change the 
input parameters and try again, iterating until a satisfac- 
tory image is generated. While this batch method of 
volume rendering is satisfactory for final presentation 
image generation, it does not lend itself to data explora- 
tion. The length of time between i ter~ons makes exper- 
imentation painful and breaks idea continuity. 

The goal of this work is to design a system for interac- 
tive exploration of volume data with enough flexibility 
to encourage the user to try numerous and possibly 
unusual mappings. The renderer uses only table driven 
interpretation and classification so the user can easily 
understand how the data is being mapped to the final 
imagE. The user must be able to control each and every 
step in the generation process. When the user changes 
an input viewing parameter, he should immediately 
(with in 10 seconds) see the change. The altered image 
may not be the final image, but it should be adequate for 
the user to quickly steer through his data [Brooks 86] 
[Greenberg 86]. 

PREVIOUS WORK 

Early attempts to visualize volume data often failed 
because the large data size and the massive amounts of 
calculations needed. Because of the availability of 
polygon renderers and line drawing displays, the volume 
rendering problem was often coerced into one of these 
problems by preprocessing the data. Contour maps 
would display a line drawing connection of equal valued 
data points [Wright 72] [Williams 821. Alternatively, 
these contours were triangulated to form polygons that 
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were then fed into polygon engines [Fuchs 77] 
[Ganapathy 82]. Other algorithms were developed for 
special classes of point data such as the rings of Saturn 
[Blinn 82], clouds [Kajiya 84], meteorological data 
[Hibbard 86], and points as primitives [Reeves 83] 
[I.~voy 85]. 

Recently, the advances in machine speed and memory 
capacity have allowed researchers to eliminate the inter- 
mediate surface model and direcdy display volume data. 
These approaches typically fall into one of two 
categories, backward mapping and forward mapping. 

Backward mapping algorithms are those algorithms that 
map the image plane into the data, commonly called ray 
tracing. For each pixel in the final image, the renderer 
shoots rays from the pixel into the data and intersects 
that ray with each data point until either the ray exits the 
volume or the opacity accumulates enough density to 
become opaque [VanHook 86] [Levoy 88] [Sabella 88] 
fUpson 88]. 

Forward mapping algorithms are those algorithms that 
directly map the data onto the image plane. Examples in 
surface graphics include the Z-buffer and the painter's 
algorithm. For each data point, the renderer maps the 
point onto the image plane and then adds its contribution 
to the accumulating image. This accumulation can be 
either back-to-front or front-to-back. The image is com- 
plete when each data point is added to the screen or the 
image becomes opaque and new samples can have no 
further effect on the final result [Drebin 88] [Upson 88]. 

DESIGN TRADEOFFS 

The main goal of this work is to find an algorithm suit- 
able for interactive volume rendering. A parallel algo- 
rithm is desired because of the large amount of computa- 
tion required in the volume rendering process. Simi- 
larly, as much of the rendering process as possible 
should be table driven. 

For an arbitrary view, a naive parallel backward map- 
ping algorithm requires that the entire data volume be 
replicated at each parallel computation node. More 
sophisticated methods may relieve some of this replica- 
tion but will not eliminate it. Since a forward mapping 
algorithm can treat each data point in isolation, there is 
no need to replicate any of the input volume in a parallel 
system. 

There are two places where discrete samples may be 
reconstructed in the volume rendering process. First, the 
renderer does volume space reconstruction where the 
three-dimensional individual input samples are recon- 
structed into a three-dimensional continuous function. 
Second, the renderer does image space reconstruction 
where individual image space intermediate samples are 
reconstructed into viewable samples that make the final 

image. 
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Figure 1. Reconstruction 

In backward mapping algorithms input values rarely fall 
exactly along a ray. Consequently, a continuous approx- 
imation of the volume data is generated near a sample 
point using tri-linear interpolation. Image reconstruc- 
tion is required when the intermediate samples do not 
fall exactly on output pixel centers. This occurs when 
anti-aliasing is done by uniform or stochastic super- 
sampling. (If all rays originate at exact pixel centers, 
the second reconstruction step becomes the identity 
mapping.) Anti-aliasing is required in a backward map- 
ping algorithm because M-linear interpolation is a poor 
reconstruction kernel [Levoy 88]. 

A forward mapping algorithm can perform the volume 
space reconstruction in two-space because the data 
points themselves are fed through the rendering pipeline 
and only an image space footprint of the data point need 
be considered. Furthermore, the image space reconstruc- 
tion is not required because the footprint function is a 
continuous function and needs only to be sampled. 
Detail of this process appear later in the paper. 

A problem for both forward and backward mapping 
algorithms is perspective. For a perspective view, the 
sampling rate of the input data with respect to the screen 
changes with depth. However, orthographic views of 
volume data are useful in their own right and often 
desired. Since perspective views are not critical for a 
wide range of applications, the renderer described in this 
paper only generates orthographic views at this time. 

For maximum speed the renderer uses table driven 
operations as often as possible. For example, the recon- 
struction process is driven by filter tables and the shad- 
ing process is driven by four shading tables. The 
renderer should not make any binary classification or 
shading decisions. All decisions should be probabilistic 
or weighted [Levoy 88] [Drebin 88]. The use of shading 
tables does not enforce this rule but certainly supports it. 
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Since a forward mapping algorithm allows parallel 
implementation without input d~t~ replication, allows 
volume reconstruction to occur in two-dimensional 
image space, and provides speed and flexibility through 
table driven shading and reconstruction, the renderer 
presented here uses a table driven forward mapping 
algorithm. 

ALGORITHM 

The algorithm consists of three main parts: the viewing 
transformation, signal reconstruction, and converting an 
input sample into a shaded intermediate sample. 

Raw Data and [ ~:=l[ [I 
Gradient Operator 

Transform 

Table Lookups I 

Shade 

Reconstruct 

Final Image 

Figure 2. Block Diagram 

Pipeline Structure 

The path through the rendering pipeline is to take an 
input sample packet, 

density value 
gradient strength 

gradient <i, j, k> direction 
grid <i, j, k> 

perform the grid space to screen space mapping which 
converts the grid <i, j, k> into screen <x, y, z>, and 
forms a packet that consists of: 

density value 
gradient strength 

gradient <i, j, k> direction 
screen <x, y, z> 

The packet is then shaded, converting the density value 
and gradient information into red, green, blue and alpha 
values forming a packet that consists of: 

red ] 
green 
blue 

alpha 
~creen <x, y, z> 

This packet is then passed through a reconstruction step 

and combined into the image buffer. When all input 
samples have been processed the image is complete. 

The following sections describe these processing steps 
in detail. 

TRANSFORMATIONS AND RECONSTRUCTION 

Screen Mapping 

Since the input volume is a regular three dimensional 
grid and the renderer only generates orthographic views, 
a digital differential analyzer (DDA) can incrementally 
map each data point from grid space to the screen space. 

= I dyldi dy/dj dyldk 
L dzldi dz/dj dzldk 

where dA/dB denotes the change in the A direction in 
image space for each step in the B direction in grid 
space. 

Thus, the step sizes in each of x, y, and z for each input 
i, j, and k can be read directly from the transformation 
matrix since it is made up of only rotations and scaling. 
By inspecting the sign and magnitude of these values, 
the renderer can determine a traversal that guarantees a 
back-to-front ordering or a front-to-back ordering. Each 
ordering has its advantages. The back-to-front ordering 
allows the user to watch the image as it is formed and 
see features which later may be obscured. Once these 
deltas are known and the ordering is known, the first 
input point is transformed with a full matrix multiplica- 
tion. This is the origin for the DDA. The renderer then 
just adds the appropriate delta as it walks through the 
input volume. The image <x, y, z> for each intermediate 
sample are used to build the image at the end of the 
rendering pipeline. 

Recohstruction 

There is one stage in the volume rendering process 
where the renderer must reconstruct a continuous signal 
from discrete samples. Image plane samples are gen- 
erated by sampling the discrete input volume. Since 
resampling a sampled signal is undefined, a continuous 
signal needs to be reconstructed from the original data 
samples prior to resarnpling. The sampled signal can be 
thought of the product of a comb function and some con- 
tinuous signal. The ideal way to reconslruct such a sig- 
nal is by convolving a sine function with the sampled 
data. For a band limited original signal, the convolution 
can exactly reconstruct the original signal. Similar to 
the way surface graphics image reconstruction can be 
either pixel driven or polygon fragment driven [Car- 
penter 84] [Abram 85], volume graphics reconstruction 
can either be pixel driven or data sample driven. 
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A backward mapping algorithm is pixel driven and can 
have problems with the volume signal reconstruction. 
The volume convolution between a three-dimensional 
sine function and the input volume is an expensive 
operation. For speed considerations, most forward map- 
ping algorithms use tri-linear interpolation to generate 
points that lie exactly along a ray. However tri-linear 
interpolation is an ineffective reconstruction kernel 
which necessitates over sampling and a second low pass 
filtering step of the generated samples. 

Instead of trying to determine which part of the input 
volume affects a given pixel, the forward mapping algo- 
rithm turns the problem "inside out" and determines 
what output pixels a given sample can effect. Since the 
data points themselves are the input samples there is no 
need to generate interpolated values. This does not 
alleviate the need for volume reconstruction, it just 
moves the problem to a later stage of the rendering pipe- 
line when a sample is added to the final image. 

Reconstruction is the process of convolving the recon- 
struction kernel with the sampled signal. The volume 
reconstruction equation is: 

signal 3o = 

~ h v ( u - x , v - y , w - z )  ~ 8(x,y,z) p(x,y,z) dudvdw 

where hvO denotes the volume reconstruction kernel, p 
denotes the density function, and ~ 5  denotes the comb 
function. 

Moving the summation outside the integral and evaluat- 
ing the integral at point <x, y, z> results in: 

signalao(x,y,z) = ~ hv (ix-x, iy-y,iz-z) p (i) 
i ~ V o l  

where i ranges over the input samples that lie within the 
kernel centered at <x, y, z>. 

Instead of considering how multiple samples effect a 
point, consider how a sample can affect many points in 
space. The effect at a point <x, y, z> by a data sample 
<i> is: 

effect~(x,y,z) = p (i) h v ( i : x , i y - y , i , - z )  

Therefore, the renderer can treat each data sample indi- 
vidually and spread its effect to the output pixels. 

Combining 
Visibility in and intensity from density functions is often 
modeled by a scattering equation which integrates 
brightness along the view direction [Blinn 82] [Kajiya 
84] [Sabella 88]. An effective approximation to a 
scattering equation is to use image composition func- 
tions [Porter 84]. Since the composition functions 
require discrete layers, the renderer needs to integrate 

each sample along the view direction. Therefore the 
sample is projected onto the image plane. Projecting the 
sample onto the image plane at pixel <x, y> is: 

effecti(x,y) = J hv(iz-x,iy-y,w) p (i) dw 

Since p is independent of z, p can be moved outside the 
integral: 

effecti(x,y) = p (i) S hv(x-i,, ,y-iy,w) dw 

Notice that the integral is independent of the sample's 
density. Since it only depends on the sample's <x, y> 
projected location, the function footprint can be defined 
as follows: 

footprint (x,y) = 5 hv(x,y,w) dw 

where <x,y> denotes the displacement of an image 
sample from the center of the volume reconsla'uction 
kernel's <x, y> projection. 

Now the renderer adds the point to the image buffer. 
Since the footprint function is continuous in <x, y>, 
there is no need to reconstruct this function. It only 
needs to be sampled at pixel centers to determine the 
footprint's contribution to a pixel, 

weight (u,v)e = footprint (Px-u,Py-v) 

where <u,v > denotes the <x, y> of a sample's image 
plane projection and P denotes the pixel in question. 

If the three-dimensional volume kernel is rotationally 
symmetric, the footprint function can be precomputed 
for all viewpoints and stored in a table in a preprocess- 
ing step. If not, the footprint function can be computed 
once per view and stored in a table. In either case the 
table is indexed by the fractional offset of a sample's 
projection from the pixel center and returns the weight 
for each pixel in the neighborhood of a sample's projec- 
tion. The sample's <red, green, blue, alpha> (deter- 
mined by the shader) is then weighted by the table value 
and added to the image buffer. The process of table 
lookup, weighting, and combining is called splatting. 

Once the point's image plane footprint is determined, it 
is added to the image buffer. The combining rules are 
different for a front-to-back and a back-to-front traver- 
sal, but these rules are equivalent (in the absence of 
roundofferrors). 

For a front-to-back traversal the formula are: 

It  = Ic + ( ( 1 - A t )  * (In*An)) 
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Ao = Ac + ((1-At) * An) 

For a back-to-front traversal the formula are: 

Io = ((1-An)*lc) + (I,~*A,,) 

Ao = ((1-A.)*Ac) + A,, 

where I denotes the intensity, A denotes the opacity, o 
denotes the output, c denotes what is already in the 
image buffer, and n denotes the new point. 

SHADING 

Provided the renderer's shader uses only information 
that is either part of the sample item or can be generated 
once in a preprocessing step, any shader can fit in the 
forward mapping algorithm. For speed considerations, 
the renderer in the current system uses a table driven 
shader that is made up of four parts: emittance, diffuse 
reflection, specular reflection, and opacity calculations. 
Conceptually a shaded object is a reflective light emit- 
ting semi-transparent blob. This shader requires that the 
density, gradient strength and gradient direction be 
known for each input sample. 

Since the gradient operator requires knowledge of 
neighboring samples, gradients are generated in a 
preprocessing step. The result of the preprocessing step 
is a 32 bit packet made up of 8 bits for density, 8 bits for 
gradient strength, and 5 bits each for gradient x, y, and z 
direction (there is 1 bit leftover). While many gradient 
operators are used in similar applications [Horn 81] 
[VanHook 86] [Drebin 88] the renderer uses the follow- 
ing: 

gradienti( i , j ,k  ) = data (i +l, j ,k)  - data ( i - l , j , k  ) 

gradient / ( i , j ,k  ) = data (i , j  + 1,k) - data ( i , j - l , k  ) 

gradientk(i , j ,k ) = data (i , j ,k  + 1) - data ( i , j , k - 1 )  

The shading model uses four tables: a table to determine 
emitted color, a table to determine reflected color, a 
table to determine opacity and a table to modulate the 
opacity. Each table has 256 entries and the table can be 
indexed by any value available in a sample packet. The 
indices select the corresponding shading value in the 
following shading rules. In addition, the emitted, 
diffuse, or specular component can be set to zero and the 
modulation component can be set to one, effectively 
turning off that component 

The emittance rule for shading is: 

Ic~t = Table,m~t[index, mit] 

The diffuse rule for shading is: 

Iai# = Tabler,~[indexr,yt] * D O T ( L , G )  

The specular rule for shading is: 

In,,c = Tabler,~[index,,~] * D O T ( H , G )  ~ 

The opacity rule for shading is: 

Ar~u = Tableor,~ [ indexot~ ] * Table~,~, [ index~,t ,  ] 

The final intensity is: 

l , . t ,  = I . ~ ,  + I ,~.  + I.v.~ 

where 1 denotes the intensity, A denotes the opacity, L 
denotes the light vector, G denotes the gradient direc- 
tion, H denotes the vector half way between the eye vec- 
tor and the light vector, and n denotes the specular 
power. Intensity has three components: red, green and 
blue. Each intensity component is clamped to fall 
between 0 and 255. 

Since the color specified in the tables is the color for a 
fully opaque sample, the color is attenuated by the opa- 
city value which occurs during the combining stage. 

An example of a use for the opacity modulation table is 
surface enhancement. If the table is loaded with a ramp 
and the gradient strength is used to select a value, the 
effect is to increase the opacity of samples that lie 
between two samples that are drastically different, thus 
bringing out pseudo surfaces. Another example is to 
index the opacity modulation table with the packet's z 
value for pseudo depth queuing. Other interesting 
effects are achieved by selecting emitted and reflected 
color with different packet elements. For example, 
choosing emitted light based on gradient strength and 
reflected light based on density value is a useful way to 
view molecular electron density volumes. 

INTERAC'nON 

User Interface 

The user has many interactive controls for image gen- 
eration. 

For shading, the user selects the emittance and 
reflectance tables which are full color tables and opacity 
and the modulation tables which are scalar tables. The 
contents of the four tables are displayed on the user's 
screen. The user also has control over which parts of the 
sample packet are used to index each table by a shading 
cross-bar selector. For lighfng, the user has the option 
of having the light direction fixed to the world coordi- 
nate system or fixed to the grid coordinate system. 

For viewing parameters, the user uses a virtual track-ball 
to select the view direction. In addition, the user selects 
the high and low <i, j, k> bounds for his data. This 
allows clipping in grid space. The user specifies which 
grid <i, j, k> appears in the center of the final image. 
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The user can also zoom into or out of the data. The user 
selects whether to generate the images in a back-to-front 
or a front-to-back ordering. 

Successive Refinement 

A way to improve the update rate of image generation is 
to display partial images during image generation. This 
allows the user to view the data with the current parame- 
ters as quickly as possible. If the user does not change 
the viewing parameters, the image continues to improve 
while the user watches the display [Bergman 86]. The 
successive refinement takes two forms. 

First, the splat buffer is visible to the user at all times, so 
he can see any partial image. If the view displayed is not 
to his liking, he can change a view parameter without 
waiting for the image to complete and image generation 
starts over. 

Second, different features of the rendering pipeline take 
different amounts of time to compute. The most impor- 
tant item effecting rendering time is the number of sam- 
pie packets that are passed down the rendering pipeline. 
Another place to gain speed is to skip formal reconstruc- 
tion and simply map each output sample packet to its 
nearest pixel. In addition, the different components of 
the shading equation take different amounts of time to 
compute, and can be turned on in succession. Therefore, 
there are three axes along which to refine an image: 
input resolution, reconstruction and shading. Currently, 
while input parameters remain unchanged the renderer 
starts with a low resolution copy of the input, moves to a 
middle resolution copy, then moves to the full resolution 
copy. It then turns on reconstruction. Once this image 
completes the diffuse and specular part of the shading 
model are turned on. 

The low resolution version of the data is achieved by 
visiting only every 4th input sample in each grid direc- 
tion. With a three-dimensional input volume this reduces 
the number of samples for the pipeline by a factor of 64. 
The middle resolution version is achieved by visiting 
every other input sample. This reduces the number of 
input points by a factor of 8. 

PARALLEL IMPLEMENTATION 

A parallel version of the forward mapping algorithm has 
been implemented. The system consists of a client, a 
splat server, and a set of map/shade servers. The splat 
server is currently a TAAC-1. It receives shaded packets 
from the client and reconstructs and combines the pack- 
ets into the image buffer. The client is currently a SUN- 
3/180C with 16 MB of main memory. It runs the user 
interface, controls each map/shade server's actions, col- 
lects shaded packets from each map/shade server and 
down loads these packets into the splat server. The 
map/shade servers are a run-time configurable collection 

of SUN-3s and SUN-4s with anywhere from 4 to 32 MB 
of main memory each, At the command of the client, 
each map/shade server reads a sub-cube of the input 
volume off disk. When the client tells each map/shade 
server to render an image, the map/shade server renders 
its sub-cube, generating shaded packets that it sends to 
the client in groups. 

The only complicated part of the parallel version of the 
forward mapping algorithm is that the splat server must 
guarantee a back-to-front or a front-to-back traversal of 
the shaded packets from the multiple map/shade servers. 
This is done with a sorted linked-list of the map/shade 
server packet buffers. 

RESULTS 

Timing Tests 

Both the single processor version and the parallel ver- 
sion of the algorithm were used to generate six images, 
one for each step in successive refinement. 

IMAGE STEP IN REFINEMENT 

A 
B 
C 
D 
E 
F 

low resolution version of the data 
middle resolution version of the data 
full resolution version of the data 
full reconstruction 
diffuse portion of the shading model 
specular portion of the shading model 

The timing volume data was a 96 by 128 by 113 com- 
puted tomography study of a human head. Color plates 1 
and 2 contain the six result images. The single Sun-3 
was a Sun-3/60M with 8 MB of main memory. The sin- 
gle Sun-4 was a Sun-4/280S with 64 MB of main 
memory. The single TAAC-1 was in a Sun-3/180 with 
16 MB of main memory. The four Sun-3s were all Sun- 
3/60M with 8 MB of main memory. The four Sun-4s 
were all Sun-4/280S with 32 MB of main memory. All 
times are in seconds. 

MACHINES A B C D E F 

TAAC- 1 3 9 65 165 179 182 

1 Sun-3 20 60 363 733 843 898 
4 Sun-3 3 21 141 172 205 223 

1 Sun-4 8 28 181 481 484 522 
4 Sun-4 3 11 89 108 112 116 

Sample Images 

Included are 16 sample images that display the results at 
each step in the refinement process as well as the output 
of the algorithm on various applications. On all image, 
the boundaries of the input volume is displayed as white 
edges. 
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DATA SlZl~ DIMENSIONS 
CT of head 96 128 113 Three Spatial 
P-orbital 64 64 64 Three Spatial 
Transfer RNA 64 64 64 Three Spatial 
Hemoglobin 64 64 64 Three Spatial 
Super-oxide 64 64 64 Three Frequency 
Galaxy 100 1130 80 Two Spatial and 

Light Wavelength 
Seismic 64 64 64 Three Spatial 

Color plate 1 and color plate 2 each contain four images 
of the computed tomography data set used in the timing 
tests. The four images of color plate 1 are the first four 
steps in the refinement process. The upper left image is 
from the low resolution version of the data. The upper 
right image is from the middle resolution version of the 
data. The lower left image is from the full resolution 
version of the data. The lower fight image is from the 
full resolution version of the data with full reconstruc- 
tion. The upper two images of color plate 2 are also 
from the timing tests. The left image is with the diffuse 
portion of the shading model. The right image is with 
both the diffuse and specular portion of the shading 
model. All these images were generated with the same 
shading tables, chosen to bring out the skin surface. The 
bottom two images are other views of the same data set. 
The left image was made with tables that were chosen to 
display bone. In addition, the reflection table was loaded 
with green to emphasize the rettected light. The right 
image has the right part of the head clipped away and 
was generated with tables that emphasize surfaces by 
using the opacity modulation table. Note the detail in 
both the bone surfaces and the skin-to-air interface 
including the nasal sinuses and throat regions. 

Color plate 3 contains four images of electron density 
data. The upper left image is an image of the p-orbitals 
of copper chloride. Note the soft bonding between the 
lobes where the electrons are shared. In the upper right 
image of transfer RNA, the volume is colored base on 
gradient strength to bring out the atom boundaries. The 
lower left image is an image of a synthetic hemoglobin 
density map. The map was generated from known atom 
centers, with bonds added to the volume data in a 
separate process. Since electron density is directly 
related to atom type and in the synthetic case these den- 
sity can be determined for each atom type, the shading 
tables were chosen to color the density by atom type: 
green for carbon, blue for nitrogen, red for oxygen, and 
yellow for sulfur. The lower fight image is an image of 
the structure factors for super-oxide dismutase. The 
points were colored by phase angle and the opacity 
depends the intensity. 

Color plate 4 contains four images: two of a Fabry-Perot 
map of a galaxy and two of a synthetic seismic study. 

Both the top imagos and both bottom images were gen- 
orated with the same shading parameters and tables. 
The only difference in the fight and left image in each 
case is a rotation. 
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