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ABSTRACT 
We present semisimp, a tool for semiautomatic simplification 
of three dimensional polygonal models.  Existing automatic 
simplification technology is quite mature, but is not sensitive to 
the heightened importance of distinct semantic model regions 
such as faces and limbs, nor to simplification constraints imposed 
by model usage such as animation.  semisimp allows users to 
preserve such regions by intervening in the simplification process.  
Users can manipulate the order in which basic simplifications are 
applied to redistribute model detail, improve the simplified 
models themselves by repositioning vertices with propagation to 
neighboring levels of detail, and adjust the hierarchical 
partitioning of the model surface to segment simplification and 
improve control of reordering and position propagation. 

ACM Category and Subject Descriptor: I.3.5 [Computer 
Graphics] Computational Geometry and Object Modeling - 
hierarchy and geometric transformations 

Additional Keywords: model simplification, multiresolution 
modeling 
 

1 MOTIVATION 
Researchers have for several years recognized the need to reduce 
the complexity of polygonal models, while at the same time 
preserving their appearance and meaning.  This has led to a large 
and useful body of research on automating this process [6].  
However, particularly when models are simplified to a few 
thousands of vertices or less, automatic algorithms show their 
limitations.  Among these are: 

• Semantic blurring.  Automatic algorithms use fairly simple 
error measures to guide simplification.  These measures 
cannot adequately gauge the impact of changes to the model 
that may blur or completely remove features containing high 
level perceptual or semantic meaning. 

• Functional blurring.  Models may be put to uses that cannot 
be divined from their geometry, topology or attributes.  Such 
uses may impose certain constraints on the simplification 
process.  For example, when models are animated with 
articulated skeletons, simplification across the joints of the 

skeleton can be extremely problematic. 

• Inadequate control.  It may be possible for users to embed 
additional information into the model to enable automatic 
simplification to avoid semantic and functional blurring.  
Nevertheless, users would ultimately like to have this control 
themselves, particularly when simplified models have a 
manageable number of faces.  Current algorithms offer only 
the most indirect sort of control through command line 
parameters. 

These limitations have led us to create the semiautomatic 
simplification tool semisimp, which provides control of the 
simplification process and enables avoidance of both semantic 
and functional blurring. 
 

2 OVERVIEW 
semisimp is a unique synthesis of simplification and 
multiresolution modeling functions, emphasizing the 
improvement of aggressively simplified models.  It begins by 
accepting a fully detailed model as input and applying an 
automatic simplification algorithm to construct a simplification 
hierarchy.  Users can then edit and improve this hierarchy for 
their target application in three ways: 

• Order manipulation.  Users can adjust the distribution of 
detail on simplified models by changing the order in which 
model regions are simplified.  This is accomplished through 
matching changes in the order in which the simplification 
hierarchy is traversed. 

• Geometric manipulation.  Users can improve the positions of 
vertices in simplified models.  These improvements can be 
automatically propagated to both simpler and more detailed 
models.  Propagation to more detailed models can be 
attenuated to preserve the shape of the original model. 

• Hierarchy manipulation.  Users can halt the simplification, 
modify the partitioning of the original model described by the 
partial simplification hierarchy to match semantics and 
intended model use, and continue simplification in a 
segmented fashion.  Since both geometric and order 
manipulation operate in the context of the simplification 
hierarchy, their effectiveness is greatly increased. 

Having improved the simplification hierarchy, users can extract 
discrete levels of detail from this hierarchy, or output the 
hierarchy itself for use in applications that dynamically adjust 
level of detail [10,14,19]. 
 

3 CONTRIBUTIONS 
These combined functions offer users a new degree of control 
over model simplification, and enable users to manually improve 
heavily simplified models with automatic assistance.  By 

 



repartitioning the model, redistributing detail, and improving 
simplified geometry, users can effectively reduce semantic and 
functional blurring.  Novel components of the system include: 

• Propagation of repositioned vertices to neighboring levels of 
detail in a simplification hierarchy, with attenuation of this 
propagation to preserve the shape of the original model. 

• Manual restructuring of the simplification hierarchy, allowing 
segmented simplification of the model and improved control 
of simplification order and geometry propagation. 

In the remainder of this paper, we review related work (section 4), 
the functions of semisimp (section 5), and give examples of 
semisimp’s usage (section 6). 
 

4 RELATED RESEARCH 
Automatic model simplification is by now a mature area of 
research, with dozens of very effective algorithms.  We will not 
attempt a comprehensive review of these algorithms, but will 
instead focus on those algorithms of particular relevance in our 
research context.  For an excellent comprehensive review, see [6]. 
semisimp can be used with a large number of automatic 

simplification algorithms that implement what we call the greedy 
search paradigm.  These algorithms work by identifying a number 
of possible primitive simplifications and choosing among them, 
using an iterative, greedy search algorithm.  This is achieved by 
estimating the error each primitive simplification would introduce 
using a simplification error measure, and inserting it into a 
primitive simplification queue that is sorted by error.  During each 
iteration, the primitive simplification that would introduce the 
least error is removed from the front of the queue, the complex 
surface it removes is approximated using a simplification filter, 
and the queue is updated to include the new primitive 
simplifications possible in the affected model neighborhood.  The 
history of this process when allowed to run to completion 
describes a simplification hierarchy with the original model in its 
leaves, and simplified versions of the model in its interior nodes. 

There are many simplification algorithms that fit this paradigm, 
and they use a variety of primitive simplifications.  The algorithm 
described by Schroeder, Zarge and Lorenson in [17] removes one 
vertex at a time.  Algorithms that remove (collapse) an edge in 
each primitive simplification include those by Hoppe [9], Ronfard 
and Rossignac [15] and Garland and Heckbert [4].  Hamann’s 
algorithm [7] removes one face at a time.  Brodsky and Watson 
remove vertex clusters [1]. 

Simplification algorithms that do not describe and traverse a 
simplification hierarchy during simplification cannot easily be 
used with semisimp, though they might conceivably produce 
hierarchy by being chained to simplify previously simplified 
output.  These include vertex clustering algorithms by Rossignac 
and Borrel [16] and Low and Tan [13], face merging algorithms 
[8,11], Turk’s retiling algorithm [18], and the simplification 
envelopes algorithm [3].  Some semisimp functions make use 
of certain components of the greedy search paradigm (see below 
for details).  In particular, semisimp makes use of the 
simplification filter and error measure, and manipulates the 
primitive simplification queue.  Adapting semisimp for use 
with automatic simplification algorithms lacking one or more of 
these components would require finding or generating substitutes 
for these paradigm components. 

We are aware of only one other tool for semiautomatic 
simplification, the Zeta tool from Cignoni, Montani, Rocchini and 
Scopigno [2].  Zeta saves the order in which primitive 
simplifications are performed, and allows users to manipulate that 
order.  Since Zeta does not make use of simplification hierarchy, 

there are few order manipulation constraints.  However, lacking 
hierarchy, Zeta does not support propagated geometry 
manipulation, nor allow segmentation of the simplification 
process by model region through hierarchy manipulation. 

Because it enables users to manipulate geometry in the 
multiresolution context of the simplification hierarchy, 
semisimp is related to research on multiresolution modeling 
[12,20].  However, while the focus of multiresolution modeling is 
editing of the original model with control of scale, our focus is the 
improvement of simplified versions of the original model.  
Geometric manipulations made with semisimp will typically be 
much more minor than edits made with multiresolution modelers.  
Functions unique to our simplified focus include user control of 
detail distribution through order manipulation, attenuation of 
geometric manipulation propagation, and partitioning control with 
hierarchy manipulation. 
 

5 semisimp 

semisimp is a semiautomatic simplification tool that allows 
modelers to intervene manually in the simplification process.  
Users begin by loading the model to be simplified into 
semisimp, at which point an automatic simplification algorithm 
is applied.  Users can then inspect the results of this algorithm at 
all levels of detail, improve them where appropriate, and save the 
results to a file.  Saved results may be either a discrete level of 
detail, or the entire simplification hiearchy. 

We implemented semisimp in a Linux environment with 
OpenGL and Motif libraries.  We currently use qslim [4] to 
perform automatic simplification.  The version of qslim we 
apply considers mesh boundaries and vertex attributes such as 
texture coordinates and normals during simplification [5].  Input 
models need not be manifold or closed, though semisimp works 
most effectively when models are manifold.  Our current 
implementation of semisimp uses the edge collapse as its 
primitive simplification, and so works best when models are 
largely topologically connected. 

Below we describe in detail the order, geometry and hierarchy 
manipulations which allow users to implement model 
simplification improvements.  We begin with a brief review of 
terminology and data structures. 
 

5.1 Terminology and Data Structures 
semisimp saves and uses as its core data structure the hierarchy 
created by automatic simplification algorithms using the greedy 
search paradigm.  A model that approximates the original model 
in its entirety describes a cut across the simplification hierarchy 
(see Figure 1).  Each hierarchy node in a cut represents a portion 

Figure 1: A cut across a simple simplification hierarchy. 



of the original model, called a patch.  Taken collectively, all the 
nodes in a cut describe a partitioning of the original model. 

Though the simplification hierarchy is a partial ordering of 
primitive simplifications (a parent node’s simplification must be 
made after its child’s), it is not a complete ordering.  semisimp 
records the order in which simplifications are to be applied in its 
order list.  Each element of this list refers to a node in the 
simplification hierarchy, and the ordering of this list describes a 
complete ordering of all primitive simplifications.  We call the 
end of the list containing the first several simplifications the early 
end, while we refer to the other end of the list with the last several 
simplifications the late end. 

The current level of detail at which the model is viewed is 
indicated by the LOD position.  In pointing at the kth element of 
an order list, the LOD position indicates that the first k primitive 
simplifications should be performed.  Each possible LOD position 
corresponds to a cut across the simplification hierarchy. 
 

5.2 Order Manipulation 
After the original model is loaded into semisimp, the original 
model is automatically simplified, and the order list filled.  Each 
element of the order list refers to a node in the automatically 
generated simplification hierarchy, and the order of those 
elements mirrors the order in which the automatic simplification 
algorithm applied its primitive simplifications.  Users can 
navigate through the various levels of detail in the current 
simplification hierarchy and order list by using a slider to change 
the LOD position (see Figure 2). 

Often a user will be dissatisfied with the distribution of detail 
provided by the automatic simplification algorithm.  For example, 
on the Stanford bunny, users may wish to exchange a decrease in 
triangles on the leg for more triangles on the head.  semisimp 

allows users to act on this wish by reordering the elements in the 
order list.  Users can effect a refining reordering by moving a 
primitive simplification to a later position in the order list, 
delaying the simplification.  Conversely, users can effect an 
simplifying reordering by moving a list element to an earlier order 
list position, performing the simplification more promptly. 

In adjusting positions of order list elements, care must be taken 
to maintain the partial ordering of primitive simplifications 
defined by the simplification hierarchy.  During a refining 
reordering, a list element c is moved from early position i to late 
position k, where i < k.  If the parent p of c is located at the 
position j, where i < j < k, it is moved to position k+1 in the order 
list.  Similar actions are taken for any other ancestors of c found 
in the range (j,k).  During a simplifying reordering, if the child c 
of the relocated order list element p is found between starting 
position k and new position i, it is relocated to position i-1.  
Similar actions are taken for any other children or descendents of 
p found in the same range. 
semisimp offers the user several interaction techniques for 

accomplishing both refining and simplifying reordering.  With 
local simplification and local refinement, users can move the 
parents or children of a node visible in the current cut to the 
current LOD position.  While viewing the current cut, users 
highlight a single vertex, a series of edges, or a patch.  They then 
indicate that they would like the highlighted nodes(s) simplified 
(or refined).  All highlighted nodes are visually replaced in the 
current cut with their parents (children) in the simplification 
hierarchy.  In the case of local simplification, other unhighlighted 
nodes may also be replaced along with their highlighted siblings.  
Local simplification is illustrated in Figure 3. 

With feature preservation and feature elimination, users can 
move the node(s) visible in one LOD position to another LOD 
position.  Users highlight one or more visible nodes in the current 
cut as above, and then navigate to a different LOD position and 
indicate that they would like these nodes to be visible there.  For 
feature preservation, users move from an early, detailed LOD 
position to a later, simplified one.  For feature elimination, users 
move from a late LOD position to an earlier one.  Feature 
preservation is presented (exaggerated for illustration) in Figure 4. 
 

5.3 Geometric Manipulation 
When viewing a certain cut across the simplification hierarchy, 

semisimp allows users to improve the position of vertices in the 
cut using the mouse.  To maintain smoothness in the current cut 
and across different levels of detail, changes in position can be  

Figure 2: Viewing different levels of detail.  Here, the cow on 
the left has 10,000 vertices, the cow on the right 100. 

Figure 4: Feature preservation along the bunny’s leg. 

Figure 3: Local simplification of the bunny’s leg. 



Figure 5: The combined effects of neighbor, descendant and 
ancestor propagation during geometric manipulation.  At the 
top is the manipulated level of detail, followed by affected 
higher and lower levels of detail. 

Figure 6: The effects of geometric propagation to children 
(finer levels of detail) with attenuation.  As the detail becomes 
finer, the manipulation fades away. 

Figure 7: The head of the bunny is made a separate partition 
and subtree, then order manipulation simplifies the head 
without any blurring at the neck. 

Figure 8: An illustration of hierarchy manipulation.  The user 
identifies nodes A B and C as a new partition, resimplification 
then begins to generate a subtree over the partition. 



propagated to topological neighbors in the current cut, as well as 
to ancestors and descendants of the affected nodes in the cut.  We 
should note that semisimp is not a full multiresolution modeling 
tool, and need only support fairly minor edits designed to make a 
simplified model look more like the original it represents.  
Therefore the filtering and smoothing techniques we use here are 
fairly modest, and do not include more advanced filtering and 
fairing techniques like those described in [20] and [12]. 

Propagation to topological neighbors of the manipulated vertex 
m is accomplished by simply interpolating the vector of position 
change → across a topological circle with user defined radius r 
(vertices within r edges of the repositioned vertex are affected by 
the change).  Users can control the shape of the propagated 
change by manipulating a Bezier curve B defined on the number 
of edges, with B(0) = 1 and B(r) = 0.  Thus the vector of change 

i
→ for a vertex i edges away from the manipulated vertex is: i

→ 
= B(i) →. 

To propagate position change to hierarchical ancestors of m, we 
use the simplification filter implemented by the automatic 
simplification algorithm (see section 4).  The simplification filter 
in qslim is the quadric, the sum of the squared plane equations 
of the faces being summarized, which is minimized to find an 
approximating vertex position (see [4] for details).  We redefine 
the quadric Qm of m using the planes of the surrounding simplified 
faces.  The quadric Qp minimized to find the adjusted position of 
the parent p of m is then recalculated by once again summing the 
quadrics of p’s children (including Qm).  The quadrics of more 
distant ancestors of m are also recalculated with new sums. 

We also provide propagation of the position change to the 
children of m.  The propagation can be direct, allowing 
modification of the original model; or attenuated, preserving the 
shape of the original model while allowing some position change 
at levels of detail close to the manipulated cut. 

Direct propagation to descendents is achieved by calculating an 
orthogonal local coordinate frame for m in its unmanipulated 
state, and then transforming the global coordinates of m’s 
descendents into detail vectors in the resulting local coordinate 
space.  After m is manipulated, a new local frame is found, and 
the detail vectors combined with the new frame to generate new 
global coordinates for m’s descendents.  We calculate m’s frame 
before and after manipulation by averaging the normal vectors of 
the faces surrounding m in the current cut to find a vector z→, 
projecting one of the edges connected to m onto plane orthogonal 
to z→ to find y→, and setting x→ to y→ × z→.  Thus descendents of 
m are not only translated, but also reoriented.  We considered 
nested reorientation with calculation of a local frame for every 
descendent; however, our simplification optimized hierarchies are 
not balanced and organized into successive frequency bands for 
multiresolution modeling like those in [20] and [12], making it 
unclear which faces surround each descendent and frame 
calculation somewhat arbitrary. 

We cast attenuated propagation to descendents as an 
interpolation problem.  If the difference in global position of one 
of m’s descendents c before and after direct propagation is d→, 
then the attenuated difference in position of c will be td→, where 0 
≤ t ≤ 1, with t = 1 at m and t = 0 at any descendent which is a leaf 
node on the simplification hierarchy.  We were tempted to link the 
value of t to the number of hierarchical generations between c and 
m, but that proved inappropriate, since our simplification 
hierarchies are usually unbalanced, with leaves having many 
different depths.  We found it most effective to link t to geometry 
by using the automatic simplification algorithm’s simplification 
error measure (see again section 4).  In qslim this measure is the 
value ε returned by the minimization of the quadric used as the 
simplification filter.  Since the quadrics represent the sum of 

squared distances, if εc and εm are the error measures of the 
simplifications that produced c and m, we set t = sqrt(εc/εm). 

We have found geometric manipulation most effective with all 
three sorts of propagation: to neighbor, ancestor, and descendant.  
Figure 5 shows the effects of such a combined propagation.  We 
demonstrate attenuation in Figure 6.  Again, in both cases we 
exaggerate the edit for the purposes of illustration. 
 

5.4 Hierarchy Manipulation 
To reduce semantic and functional blurring, semisimp allows 
users to halt automatic simplification, correct the current 
partitioning of the model, and then continue simplification in a 
segmented fashion.  In this way, the head on the Stanford bunny 
might be simplified separately from the body (see Figure 7).  We 
call this hierarchy manipulation because it changes the structure 
of the simplification tree by constructing a simplification subtree 
containing and simplifying the user defined patch.  Users gain a 
new degree of control over both order and geometric 
manipulation.  In the case of order manipulation, hierarchy 
manipulation sidesteps the constraints of the partial ordering 
imposed by the automatically defined simplification hierarchy.  
Hierarchy manipulation improves geometry manipulation by 
giving users explicit control of propagation to ancestors and 
descendants. 

To manipulate hierarchy, users identify a collection of nodes in 
the currently viewed cut that should be formed into a new patch 
and separate subtree s of the hierarchy (see Figure 8).  s is formed 
by recreating the state of the automatic simplification algorithm at 
the moment it reached the cut (this state may in fact never have 
been reached if the user has manipulated simplification order), 
and then modifying that state so that the nodes of s cannot be 
merged with the remainder of the hierarchy.  The automatic 
simplification algorithm is then restarted and executed until s has 
been reduced to a single node.  At this point, the simplification 
algorithm’s state is again modified to allow the newly formed root 
of s to be merged with the remainder of the hierarchy, and the 
simplification algorithm is executed to completion. 
semisimp recreates simplification state by creating a primitive 

simplification queue that corresponds to the current cut.  With 
qslim, this means the queue contains one primitive 
simplification entry for each edge in the current cut, sorted by the 
current simplification error measure.  We then ensure that the user 
defined patch and matching subtree s will not be merged with the 
remainder of the simplification hierarchy by removing all 
primitive simplifications crossing the patch boundary from the 
primitive simplification queue (vertices on the patch boundary are 
assigned to the patch surround).  When qslim has simplified the 
patch to a single node, the primitive simplifications previously 
removed are reinserted into the primitive simplification queue, 
minus any that have become redundant during the preceding 
simplification.  Further simplification then incorporates the fully 
simplified patch. 

Care must be taken when using hierarchy manipulation, since it 
completely rebuilds the higher levels of the simplification 
hierarchy, making all previous order and geometry manipulations 
obsolete. 
 

6 USAGE EXAMPLES 
In this section we present several examples demonstrating the 
combined application of order, geometric, and hierarchy 
manipulation with semisimp.  Figure 9 illustrates the reduction 
of semantic blurring in a cow model.  In the upper row is the 
original model.  The middle row shows the results of automatic 
simplification with qslim.  The bottom row shows the results of 



improvement with semisimp.  Preservation of the semantically 
important head and udder has been improved.  Users were able to 
achieve this improvement (and the others discussed in this 
section) with interactions only at the regions of interest, rather 
than across the entire model. 

Semantic regions may also have an important functional 
distinction in the target application.  For example in animation, 
regions on articulated models are matched to segments of their 
skeletons.  Automatic simplification can blur the boundaries 
between these regions.  Figure 7 illustrates the use of semisimp 
to preserve a boundary that could have both semantic and 
functional significance: the neck of the bunny.  The head and the 
body are simplified differently around this boundary. 

Finally, Figure 10 illustrates the use of semisimp to prevent a 
different kind of functional blurring: the distortion of a visual 
discontinuity inside a texture.  Such a discontinuity is difficult to 
detect automatically from model attributes.  The first part of the 
figure shows the original horse model with a single texture 
applied to it.  Although the texture covers the entire model, there 
is an oval spot in the middle of the texture.  After automatic 
simplification (with texture coordinate preservation), the spot is 
somewhat distorted.  The final part of the figure shows the results 
after semiautomatic improvement of the simplification with 
semisimp.  The oval spot is well preserved. 
 

7 FURTHER RESEARCH 
Many improvements and extensions of semisimp are possible.  
In particular, geometric manipulations propagated to descendants 
can easily introduce discontinuities in the model surface when the 
manipulations deviate significantly from the shape of the input 
model.  It may be possible to reduce these discontinuities with 
more advanced filtering and smoothing schemes.  Propagated 
geometric manipulations can also alter previously made geometric 
manipulations.  A more elaborate interpolation scheme between 
manipulated nodes of the simplification hierarchy might be able to 
solve this problem.  More complex editing facilities allowing 
insertion and deletion of vertices and perhaps editing of non-
geometric attributes would be a valuable extension.  Finally, 
although semiautomatic simplification of extremely large models 
was not our goal, optimization of semisimp to handle larger 
models would be useful.  With our current implementation, 
certain operations (e.g. changing the LOD position) can take 
several seconds when input models contain several tens of 
thousands of polygons. 
 

8 CONCLUSION 
We have presented semisimp, a tool for the semiautomatic 
simplification of highly detailed models.  This tool allows users to 
improve the quality of aggressively simplified models by 
manipulating the order in which primitive simplifications are 
applied, the vertex positions of simplified models, and the 
hierarchical partitioning of the model formed during 
simplification.  With these abilities, users can manually preserve 
semantically and functionally distinct model regions that are 
blurred by automatic simplification algorithms, including facial 
details, regions bound to articulated skeletons, and details 
embedded in texture mapped images. 
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Figure 9: Using the combined functions of semisimp
to reduce semantic blurring of the head.  On the top is 
the original cow.  In the middle, the automatically 
simplified cow with 588 faces.  At the bottom, the 
manually improved cow, also with 588 faces.  Notice 
the strong similarity of the bottom and top models. 

Figure 10: Using the combined functions of 
semisimp to reduce functional blurring.  Here, the 
entire horse is covered with texture, but there is a strong 
color discontinuity in the texture.  The two lower 
models have the same number of faces, with the middle 
produced by qslim, the bottom with semisimp. 


