Shape Manipulation

Model Simplification

Problem

Models are too big to:

Display interactively

Display at all

Typical domains

3D scanning – very verbose

Visualization of scientific data

Century man-year CAD/CAM efforts: plants, ships and planes

Results of procedural models

Tuning for interactive environments

Basic approach

Define a primitive simplification *operator*: e.g. edge collapse

Define a *measure* of this operator's effect on model quality

Use a greedy algorithm:

Initialize the a queue of operations, sorted by measure

Repeat

Apply operator at front of queue

Adjust affected queue entries

Until target [error, # polys] reached

Brief taxonomy based on quantization

Pairwise merge algorithms

Operators are defined as merges of surface patches

Common example: edge collapse (Hoppe, Garland)

Usually best quality, fairly slow

Pruning algorithms

Operators are defined as removals of a patch at a time

Common example: decimations (Schroeder)

Good quality, slower

Splitting

Operators are splitting of coarse patches

Simplification in fact becomes refinement

Common example: rsimp (Watson)

Decent quality, fast

Product codes

Patches are defined by a quantization of the model space

Not greedy: linear time

Common example: vertex clustering (Rossignac)

Poor quality, very fast

Critique

+: works well and used widely

-: Still difficult to simply models out of core

-: Still difficult to handle the relationship of geometry and attributes

Related fields

Level of detail (LOD)

How to use simplified models in interactive display?

Measuring visual fidelity

Which primitive simplification preserves appearance?

Surface fitting

Problem

We have a cloud of points from a scanning apparatus

How do we turn these points into a surface model?

Basic example (Turk & Levoy)

Make multiple partial scans

Fit surface to each scan (fairly simple)

Repeat

Choose two partial scans

Align them to one another using iterated closest points

Join the surfaces topologically

Tune the local geometry with comparisons to point cloud

Until all partial scans are joined

Critique

- +: widely used
- -: didn't address reflectance & surface properties
- -: what about parametric surfaces?

Shape comparison

Problem

How to sort & and query for shapes?

Basic example (Osada, Funkhouser et al)

Define a shape function

Should be invariant under rigid transforms, small detail variation

E.g. distance between two random model points

E.g. volume of tetrahedron between four model points

Use it to create a shape distribution

Make a lot of random samples of shape function

Form a histogram

Fit a piecewise linear probability distribution function

Result, a vector with N integers

Compare shape distributions

Use existing function comparison approaches

They use Minkowski sum:

Shape distr A, B sum((A-B)^N)^(1/N)

Critique

- +: Good for rough classification
- -: Not good at details

Issues

What is a good shape function?

How to query?