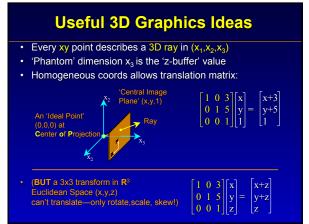
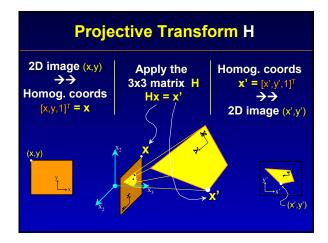
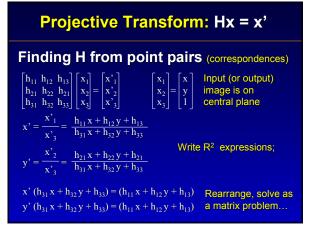
CS 395/495-26: Spring 2002

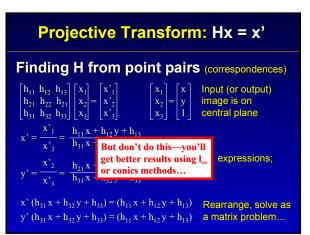
IBMR: Week 2 B 2-D Projective Geometry

Jack Tumblin jet@cs.northwestern.edu









- · Can also transform Lines:
 - Recall point **x** is on line I iff $\mathbf{x}^{\mathsf{T}}\mathbf{I} = \mathbf{0} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{bmatrix}$ Lines transform 'covariantly' (**a**) = [**b**]

$$I' = H^{-T}I$$

- · And transform Conics:
 - Recall point x is on a conic curve defined by C iff $\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = \mathbf{0}$

 $\mathbf{C'} = \mathbf{H}^{-\mathsf{T}} \mathbf{C} \mathbf{H}^{-1}$

Projective Transform: H

Comp. Graphics 'View interpolation' notion

- Fixed, rigid 2D viewing point, viewing plane

- Rigid 2D world plane positioned in 3D $(x_1 \ x_2 \ x_3)$
- only 6 DOF: world plane rotate & position.
- Comp. Vision 'Projective Transform' notion
 Fixed, rigid 2D viewing point, viewing plane
 - 'Stretchy' 2D world plane: allow affine changes
 - result: (up to) 8 DOF

The bits and pieces of H

- H has 8 independent variables (DOF)
- Computer Graphics method (3x3 matrix):

• Computer Vision method(2D projective): Isometry--3DOF(2D translate t_x, t_y ; 2Drotate θ_{z_1}) Similarity--4DOF (add uniform scale s;) Affine --6DOF (add orientable scale s_{θ} ,/s, $s_{\theta \perp}$ /s) Projective--8DOF (changes x_{3_1} ; 3D-rotation-like)

The bits and pieces of H

- H has 8 independent variables (DOF)
- Computer Graphics method (3x3 matrix):

Affects only x1,x2

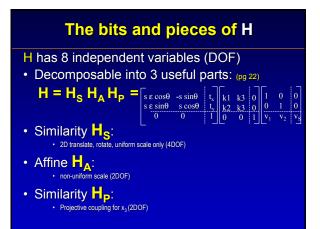
The bits and pieces of H

• 0

H has 8 independent variables (DOF)

Decomposable into 3 useful parts: (pg 22)

• Similarity H_P: • Projective coupling for x₃ (2DOF)

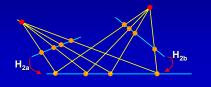


1-D Projective Geometry

(?Why? we use it later)

- A 'side' view of 2D projective geometry
- Convert R¹ scalar b to a 2-vector b in P¹
- As with P², we can transform points:

- (use various H_{2x2} 's to change white lines below)



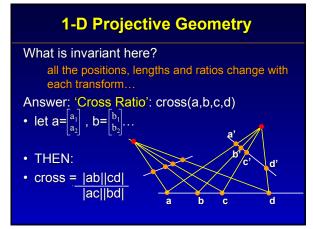


Image Rectifying: Undo parts of H

x' = H x where $H = H_S H_A H_P$

GOAL: Put world plane x' into view plane

- Affine Rect.; (find only H_P (2DOF));
- Similarity Rect.; (find only $H_A H_P$ (6DOF)); (find all of H (8DOF));
- Full Rect.:

METHODS: (mix & match?)

- 1. Full: 4-point correspondence
- 2. 'Vanishing Point', Infinity line methods
- 3. Conics and circular points

Image Rectifying: Undo parts of H

x' = H x where $H = H_S H_A H_P$

GOAL: Put world plane x' into view plane

- Affine Rect.:
- (find only H_{P} Similarity Rect.; (find only H_A H_P
- Full Rect.;
 - (find all of H
- (6DOF)); (8DOF));

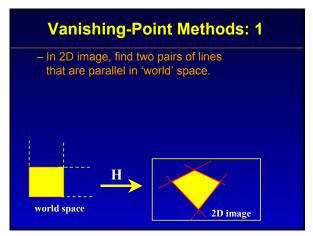
Other DOF? make

assumptions, or ignore

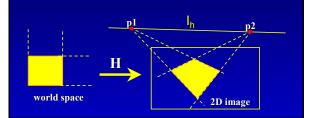
(2DOF));

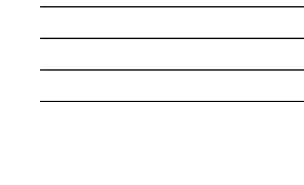
METHODS: (mix & match?)

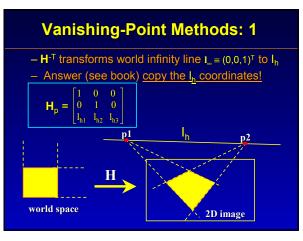
- 1. Full: 4-point correspond
- 2. 'Vanishing Point', Infinity
- 3. Conics and circular points

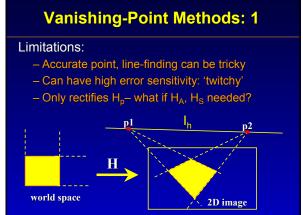


 Find intersection (vanishing points) p1, p2 (compute line intersections with 3D cross-products (see last lecture)
 Horizon line I_h connects p1, p2.





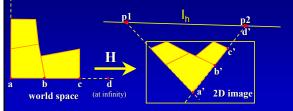




Vanishing-Point Methods: 2

No parallel lines?

- find 2D image line with a known distance ratio
- Use Cross-Ratio (in \mathbf{P}^1 along that line) to
- Find vanishing point distance at point d'



Conic Methods

- Better-behaved, easier to use(?)
- Determines H_A H_P (4DOF) (all but 2D trans, rot, scale)

Go back and review conics first (pg.8)

- 'Conics' == intersection of cone & plane:
- Many possible shapes: circles, ellipses, parabola, hyperbola, degenerates (lines & points

Conic Methods

- Equation of any/all conics solve a 2D quadratic: $ax^2 + bxy + cy^2 + dx + ey + f = 0$

- Write in homogeneous coordinates:

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{vmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

– C is symmetric, 5DOF (because x_3 scaling) – Find any **C** from 5 homogeneous points

a 'Point Conic' (solve for null space-

Conic Methods

Matrix C makes conics from points:
 x^TCx = 0 C is a 'point conic'

 Given a point x on a conic curve, the homog. tangent line l is given by l = C x

 Matrix C* makes conics from lines:
 I^TC*I = 0 C* is a 'Dual Conic' defined by tangent lines I instead of points.

Conic Methods

- If **C** is non-singular (rank 3), then $C^* = C^{-1}$

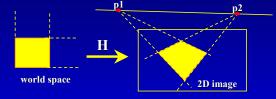
If C (or C*) has...
 Rank 3: it is an ellipse, circle, parab., hyperb.
 Rank 2: it is a pair of lines (forms an 'x')

– Projective transform of a conic C is conic C': C' = H^{-T} C H⁻¹

END

Vanishing-Point Methods: 1

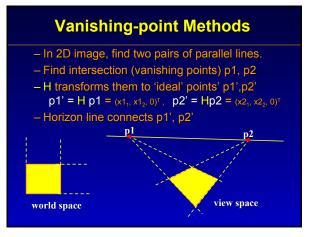
- In 2D image, find two pairs of lines that are parallel in 'world' space.
- Find intersection (vanishing points) p1, p2
- Horizon line connects p1', p2'
- \mathbf{H}^{-T} transforms world $\mathbf{I}_{\infty} \equiv (0,0,1)^{T}$ to horizon



The bits and pieces of H

- H has 8 independent variables (DOF)
- Decomposable into 3 useful parts: (pg 22)

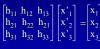
- Similarity H_S:
 2D translate, rotate, uniform scale only (4DOF)
- Affine H_A: non-uniform scale (2DOF)
- Similarity H_p: Projective coupling for x₃ (2DOF)



Projective Transform H

Finding H from point pairs (correspondences)

- We know that **Hx' = x**, and
- we know at least 4 point pairs x' and x that satisfy it:



X Xa

H x' = x

ATTEMPT 1: 'plug & chug' make a matrix of x and x' values...

Η

Projective Transform: Hx = x'

Finding H from point pairs (correspondences)

x

$\begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}$	h ₁₂ h ₂₂ h ₃₂	h ₁₃ h ₂₁ h ₃₃	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	=	$\begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \end{bmatrix}$	

Input (or output) image is on central plane у 1 X_3

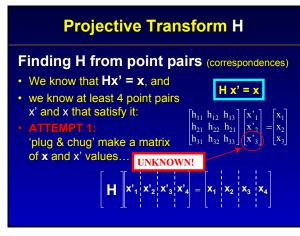
 $\begin{array}{c} x_1h_{11} \ x_2h_{12} \ x_3h_{13} \ x_1h_{21} \ x_2h_{22} \ x_3'h_{21} \end{array}$

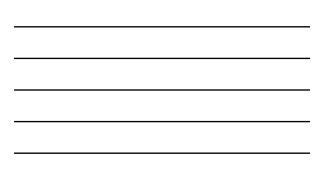
 $\frac{x_1h_{21}}{x_1h_{31}}\frac{x_2h_{22}}{x_2h_{32}}\frac{x_3h_{21}}{x_3h_{33}}$

x]h₂₁

ha Xah X

 $x_1h_{11} x_2h_{12} y_3h_{13}$ x1h31 x2h32 x3 h33

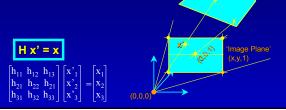




2D Projective Transform

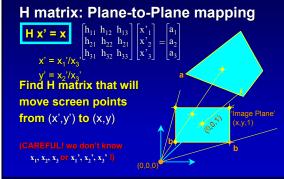
View Interpolation ('Projective Transform')

- 2D image $(x,y) \rightarrow$ homog. coords $[x,y,1]^T = x$
- Transform by 3x3 matrix H x' = Hy
- homog. coords $\mathbf{x'} = [\mathbf{x'}, \mathbf{y'}, 1]^T \rightarrow \mathbf{2}^T$



x',y')

Projective Transform H



Projective Transform H H matrix: Plane-to-Plane mapping $\begin{array}{c} \mathbf{F}_{1} \\ \mathbf{F}_{2} \\ \mathbf{F}_{2} \\ \mathbf{F}_{2} \\ \mathbf{F}_{3} \\$

Useful 3D Graphics Ideas

- Every xy point describes a 3D ray in (x₁,x₂,x₃)
- 'Phantom' dimension x_3 is the 'z-buffer' value
- Homogeneous coords allows translation matrix: BUT a 3x3 transform in (x,y,z) can't do translation

