CS 395/495-26: Spring 2002

IBMR: Week 3 A

2D Projective Geometry

Jack Tumblin
jet@cs.northwestern.edu

Projective Transform H

The bits and pieces of H

H has 8 independent variables (DOF)

- Computer Graphics method (3x3 matrix):
\qquad
2D Translation $\left(\mathrm{t}_{x}, \mathrm{t}_{y}\right)$
3D Scale ($\mathrm{s}_{x}, \mathrm{~s}_{\mathrm{y}}, \mathrm{s}_{z}$)
3D Rotation $\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$
- Computer Vision method (2D projective): Isometry-3DOF (2D translate $\mathrm{t}_{x}, \mathrm{t}_{\mathrm{y}} ; 2$ 2Drotate θ_{z};) Similarity--4DOF (add uniform scale s;)
Affine --6DOF (add orientable scale $\mathrm{s}_{\theta} / \mathrm{s}, \mathrm{s}_{\theta 1} / \mathrm{s}$) Projective--8DOF (changes x_{3}; 3D-rotation-like)

Image Rectifying: Undo parts of H

$x^{\prime}=H x$ where $H=H_{S} H_{A} H_{P}$

GOAL: Put world plane x^{\prime} into view plane

- Affine Rect.; (find only H_{P} (2DOF));
- Metric Rect.; (find H_{A} and H_{P} (6DOF));
- Full Rect.; (find all of H (8DOF))
\qquad
\qquad
\qquad

METHODS: \qquad

1. Affine: 'Vanishing Point', Infinity line methods
2. Metric: Conics \& Circular Points \qquad
3. Full: 4-point correspondence

Conic Review

Review conics first (pg.8)

- 'Conics' == intersection of cone \& plane:
- Many possible shapes:
circles, ellipses, parabola, hyperbola, degenerate lines \& points

Dual Forms:

- 'Point Conics' defined by points on the curve
- 'Line Conics' defined by lines tangent to curve

Point Conics: C

- Equation of any/all conics solve a 2D quadratic:

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

\qquad

- Write in homogeneous coordinates:

-C is symmetric, 5DOF (because x_{3} scaling)
- Find any C from 5 homogeneous points \qquad
hence a 'Point Conic

Point Conics: C

- Matrix C makes conic curves from points \mathbf{x} :

$$
\mathbf{x}^{\top} \mathbf{C x}=0 \quad \mathbf{C} \text { is a 'point conic' }
$$

\qquad
\qquad

- The tangent line L for point \mathbf{x} is: L = C x

- Projective transform by H is:

$$
\mathrm{C}^{\prime}=\mathrm{H}^{-\mathrm{T}} \mathbf{C H} \mathrm{H}^{-1}
$$

(messy!)

‘Dual' or Line Conics: C

- Matrix C* makes conic curves from lines L: $L^{\top} \mathbf{C}^{*} \mathbf{L}=0 \quad \mathbf{C}$ is a 'line conic'
- The tangent point x for line L is: $\mathrm{x}=\mathrm{C}^{*} \mathrm{~L}$
- Projective transform by H is:

$$
C^{* \prime}=H C^{*} H^{\top}
$$

- If \mathbf{C} is non-singular (rank 3), then $\mathbf{C}^{*}=\mathbf{C}^{-1}$

Degenerate Conics

$\mathbf{x C x = 0}$ or $\quad\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{lll}a & 0 & d / 2 \\ b / 2 & c & e / 2 \\ d / 2 & e / 2 & f\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$
General form of point conic:
$a x^{2}+b x y+c y^{2}+d x+e y+f=0$ (or)
$a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}+d x_{1}+e x_{2}+f x_{3}=0$

- A special 'degenerate' case,
'infinite radius circle' as $x_{3} \rightarrow 0$
$1 x_{1}{ }^{2}+0 x_{1}+1 x_{2}{ }^{2}+c x_{1}+\theta x_{2}=0$
$\mathbf{C}_{\infty}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \underset{\substack{\text { solution: } \\ 2 \text { complex } \mathbf{x} \text { vectors:- }}}{ }\left[\begin{array}{l}\mathbf{1} \\ \mathbf{i} \\ \mathbf{0}\end{array}\right] \underset{\text { and }}{ }\left[\begin{array}{c}\mathbf{1} \\ -\mathbf{i} \\ \mathbf{0}\end{array}\right]$

Conic Weirdness I

'Circular Points' $\mathrm{I}=\left[\begin{array}{l}\mathbf{1} \\ \mathbf{i} \\ \mathbf{0}\end{array}\right], \mathrm{J}=\left[\begin{array}{c}\mathbf{1} \\ -\mathbf{i} \\ \mathbf{0}\end{array}\right] ; \quad$ or $\mathbf{C}_{\infty}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$

- 'Ideal points'; 2 points at infinity / horizon, but.
- Complex : real part on \mathbf{x} axis, imag. on \mathbf{y}
- "Where infinite circle hits infinity line $L_{\infty}[0,0,1]$ "
- Where? imaginary! (infinite x, y axes, maybe?)
- Affected by H_{P} only. ($\mathrm{H}_{\mathrm{S}}, \mathrm{H}_{\mathrm{A}}$ have no effect)

?WHY BOTHER?

-3 real pts +2 circular points \rightarrow find circle conic

- To measure angles in projective space

Conic Weirdness 2

'Circular Points' $\mathrm{I}=\left[\begin{array}{l}\mathbf{1} \\ \mathbf{i} \\ \mathbf{0}\end{array}\right], \mathrm{J}=\left[\begin{array}{c}\mathbf{1} \\ -\mathbf{i} \\ \mathbf{0}\end{array}\right]$; and $\mathbf{C}_{\infty}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$

- C_{∞} is a point conic, affected by H_{p} only.
- \mathbf{C}_{∞} is line conic, but the same matrix (????)
- Is same as outer product: $\mid \mathbf{J}^{\top}+\mathbf{J} \mathbf{I}^{\top}$
- Transform this line conic as: $\mathbf{C}_{\infty}^{*}{ }_{\infty}^{\prime}=\mathbf{H ~ C *}{ }_{\infty} \mathrm{H}^{\top}$
- Affected by H_{P} and H_{A} only, (H_{S} does nothing)
- Includes L_{∞} the infinity line $\left(L_{\infty} C_{\infty}^{*} L_{\infty}=0\right)$

ALL transforms of C_{∞}^{*} have only 4DOF

Conics: Angle Measuring

- Matrix H transforms C_{∞} to another space:

$$
\mathbf{C}_{\infty}^{*}=\mathrm{HC}_{\infty}^{*} \mathrm{H}^{\mathrm{T}}
$$

Angles: \qquad

- define 'world space' \mathbf{C}_{∞}^{*} as $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
- (for any two world-space homogeneous lines)

L and \mathbf{m} are perpendicular iff $\mathrm{L}^{\top} \mathbf{C}_{\infty}^{*} \mathbf{m}=\mathbf{0}$

- Also true for transformed \mathbf{L}, \mathbf{m} and $\mathbf{C}^{*}{ }_{\infty}$, so...
$-\mathbf{C}_{\infty}^{*}$ ' in image space \rightarrow angle θ in world space

$$
\cos (\theta)=\frac{\left(\mathrm{L}^{\mathrm{T}} \mathrm{C}^{*} \omega^{\prime} \mathrm{m}\right)}{\sqrt{\mathrm{L}^{\mathrm{T}} \mathrm{C}^{*}{ }^{\prime} \mathrm{C}^{\mathrm{L}} \mathrm{~L}\left(\mathrm{~m}^{\mathrm{T}} \mathrm{C}^{*}{ }^{\prime} \mathrm{m}\right)}}
$$

Undoing H: Metric Rect. 1

- C $_{\infty}^{*}{ }_{\infty}$ ' has only 4DOF (before,after ANY H)
- All C* ${ }_{\infty}$ ' DOF are contained in $\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{P}\right)$
- SVD can convert C_{∞}^{*} ' to $\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{P}}\right)$ matrix!
- Task is then 'find C_{∞}^{*} ' to find H^{\prime}

Undoing H: Metric Rect. 1

- Book shows how to write (simple, tedious):

$$
\mathrm{C}_{\infty}^{*}{ }_{\infty}^{\prime}=\left[\begin{array}{c:c}
\mathrm{KK}^{\mathrm{T}} & \mathrm{~K} \overline{\mathrm{v}} \\
\mathrm{v}^{\mathrm{T}} \cdot \\
0
\end{array}\right]
$$

where K is 2×2 symmetric (affine part: 2DOF) v is 2×1 vector, (projective part: 2DOF)

Undoing H: Metric Rect. 1

- First, ignore projective part: set v=0.
- Choose two pairs of perpendicular lines L,m
- Use $L^{\prime} \mathbf{C}_{\infty}^{*}{ }^{\prime} \mathrm{m}^{\prime}=0$ to solve for K

Matrix Math \& SVDs

- Matrix multiply is a change of coordinates
- Rows of $A=$ coordinate axis vectors
$-A x=$ a dot product for each axis
- input space \rightarrow output space
- SVD 'factors' matrix A into 3 parts:
- U = orthonormal basis

$$
\operatorname{svd}(\mathbf{A})=\mathrm{U} \text { S V }
$$

Matrix Math \& SVDs

- Matrix multiply is a change of coordinates
- Rows of $A=$ coordinate axis vectors
$-A x=a \operatorname{dot}$ product for each axis
- input space \rightarrow output space
- SVD 'factors' matrix A into 3 parts:
- U = orthonormal basis

$$
\operatorname{svd}(\mathbf{A})=\mathrm{U} \text { S } \mathbf{~ V}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Undoing H: Metric Rectification 2

END

