IBMR: Week 3 B

SVD Review, \& Finish 2D Projective Geometry

Jack Tumblin
jet@cs.northwestern.edu \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

- N -dim. input space $\rightarrow \mathrm{M}$-dim. output space
- Rows of $\mathrm{A}=$ new coordinate axes \qquad
Ax = a dot product for each new axis \qquad

SVD Review: What is it?

- Sphere of all unit-length $\mathbf{x} \rightarrow$ output ellipsoid \qquad
- Its axes form orthonormal basis vectors U_{i} :

\qquad
- $\operatorname{SVD}(\mathrm{A})=\mathbf{U S V}^{\top}$
columns of $\mathrm{U}=$ output basis vectors

SVD Review: What is it?

- For each $\mathbf{U}_{\mathbf{i}}$, make a matching \mathbf{V}_{i} that:
- Transforms to $\mathbf{U}_{\mathbf{i}}$ (with scaling \mathbf{s}_{i}): $\mathrm{s}_{\mathrm{i}}\left(\mathrm{A} \mathrm{V}_{\mathrm{i}}\right)=\mathrm{U}_{\mathrm{i}}$
- Forms an orthonormal basis of input space

- $\operatorname{SVD}(\mathrm{A})=\operatorname{USV}^{\top}$
columns of $\mathrm{V}=$ input basis vectors
\qquad

SVD Review: What is it?

- Finish: $\operatorname{SVD}(\mathrm{A})=\mathbf{U S V}^{\boldsymbol{\top}}$
- add 'missing' U_{i} or V_{i}, define $s_{i}=0$.
- Singular matrix \mathbf{S} : diagonals are s_{i}
- Matrix \mathbf{U}, Matrix \mathbf{V} have columns U_{i} and V_{i}

$\mathrm{AX}_{\mathrm{A}}^{\mathrm{b}}$

\qquad
\qquad

Minput(Ndim:- Output Mdim) \qquad
$\mathrm{A}=\mathbf{U S V}^{\boldsymbol{T}} \quad$ 'Find Input \& Output Axes, Linked by Scale'
\qquad

'Let SVDs Explain it All for You'

- Orthonormal U and $\mathrm{V}: \mathrm{U}^{-1}=\mathrm{U}^{\mathrm{T}}, \mathrm{V}^{-1}=\mathrm{V}^{\top}$
- Rank(A)? \# of non-zero singular values s_{i} \qquad
- 'ill conditioned'? Some s_{i} are nearly zero
- 'Invert non-square A^{\prime} ? $A=\mathrm{USV}^{\top} ; \mathrm{U}^{\top} \mathrm{S}^{-1} \mathrm{~V} \quad \mathrm{~A}=\mathrm{I}$

\qquad
\qquad
\qquad
\qquad
$A=$ USVT \quad 'Find Input \& Output Axes, Linked by Scale' \qquad

'Let SVDs Explain it All for You’

- Solve $\mathbf{A x}=\mathbf{0}$ (Null Space of x): Columns V_{i} whose $S_{i}=0$ span all solutions, so write $x=a V_{i 1}+b V_{i 2}+\ldots$ \qquad
- Symmetry: if $\mathbf{A}^{\top}=\mathbf{A}$ then $\operatorname{SVD}(\mathrm{A})$ is too: $\mathrm{A}=\mathrm{USU}^{\top}$
$-\mathrm{C}^{*}{ }_{\infty}{ }^{\prime}=\mathrm{H} \mathrm{C}^{*}{ }_{\infty} \mathrm{H}^{\top}$ is symmetric, so SVD finds H for you $\operatorname{SVD}\left(\mathrm{C}^{*}{ }_{\infty}{ }^{\circ}\right)=\mathrm{USU}^{\mathrm{T}}=(\mathrm{H})\left(\mathbf{C}_{\infty}^{*}\right)\left(\mathrm{H}^{\top}\right),(\mathrm{pg} 35)$

$\mathrm{A}=\mathbf{U S V}^{\mathbf{T}} \quad$ 'Find Input \& Output Axes, Linked by Scale'

Undoing H: Metric Rectification

- C_{∞}^{*} ' has only 4DOF (before,after ANY H)
- All C** ${ }_{\infty}$ DOF are contained in $\left(\mathrm{H}_{A} \mathrm{H}_{P}\right)$
- SVD can convert C_{∞}^{*} ' to $\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{P}}\right)$ matrix!
- Task is then 'find $\mathrm{C}_{\mathrm{C}^{*}}$ ' to find H^{\prime}

\qquad
\qquad
\qquad
? But how do we find C_{∞}^{*} '?
One Answer: use perpendicular lines
- (Recall) we defined 'world space' \mathbf{C}_{∞}^{*} as
- hen: 2 world-space lines L andm are
perpendicular iff $L^{T} G_{\infty}^{*} m=0$
- Also true for transformed \mathbf{L}, \mathbf{m} and \mathbf{C}_{∞}^{*}
- \mathbf{H} transforms \mathbf{C}_{∞}^{*} to image space \mathbf{C}_{∞}^{*} ' by:
$\mathbf{C}_{\infty}^{*}{ }^{\prime}=\mathbf{H C}_{\infty}^{*}{ }^{\boldsymbol{H} \boldsymbol{T}}$
- Now split up H and try it: $H=H_{S} H_{A} H_{P}$, so..

Undoing H: Metric Rectification

- Tedious algebra pross shows symmetry:
where K is 2×2 symmetric (affine part: 2DOF) vis 2×1 vector, (projective part: 2DOF)
- ?But what do K and V really control?

Compare H_{A} and H_{P}

- HA is '2D skew': directional scaling:
- HP is '3D projection': parallel lines converge

\qquad
\qquad
\qquad
\qquad
\qquad

Undoing H: Metric Rectification

- OK, then how do we find K anct v?

Choose known-perpendicular line pairs ($\mathbf{L}_{i}, \mathrm{~m}_{\mathrm{i}}$), then compute by: \qquad

- Method 1a: pase Assume $\mathrm{v}=0$, solve for K
- Method 1b: Assume $k=0$, solve for v
- Method 2: \quad Rearrange, solve for full \mathbf{C}_{∞}^{*}, then get H using SVD.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Undoing H: Metric Rect. 1a

Method 1a: Assume $\mathrm{v}=\mathrm{O}_{7}$ solye for K

$$
\mathbf{C}_{\infty}^{*}{ }_{\infty}^{\prime}=\mathrm{HC}_{\infty}^{*} \mathrm{H}^{\mathrm{T}}=
$$

\qquad
\qquad
\qquad

- 'Stack' to qombine both line pajrs \qquad

Solve susing SVD: 'input null space' (Ax=0)
Extract H_{A} using SVD: \qquad recall $\mathbf{C}^{+}{ }_{\omega}=\mathrm{H} \mathrm{C} \mathrm{C}_{\infty}^{*} \mathrm{H}^{\mathrm{T}}$, it is symmetric.
\qquad

Undoing H: Metric Rect. 1b

\qquad

- 'flatten' to one equation

Extract \mathbf{H}_{p} from $\mathbf{C}_{\infty}^{*}{ }^{\prime}$ using SVD
\qquad
Choose $2 \perp$ line pairs $\left(L_{a}, m_{a}\right)$ and $\left(L_{b}, m_{b}\right)$ \qquad

Method 2: Rearrange, or 'flatten' $\mathbf{C}_{\infty}^{*}{ }^{\prime}$

$$
\mathbf{C}_{\infty}^{*}=\boldsymbol{H} \mathbf{C}_{\infty}^{*} \boldsymbol{H}^{\top}=\left[\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right]
$$

Choose $5 \perp$ line pairs $\left(L_{1}, m_{1}\right) \ldots\left(L_{5}, m_{5}\right)$
These satisfy $L^{\top} \mathbf{C}_{\infty}^{*}$ ' $m=0$ or:
'flatten' to one equation

\qquad
\qquad
\qquad
\qquad
\qquad

Undoing H: Metric Rect. 2
Method 2: Rearrange, or 'flatten' C*
$\mathbf{C}_{\infty}^{*}{ }^{\prime}=\mathrm{HC}_{\infty}^{*} \mathrm{H}^{\mathrm{T}}=$ $\left[\begin{array}{ccc}a & b / 2 & d / 2 \\ b / 2 & c & e / 2 \\ d / 2 & e / 2 & f\end{array}\right]$
stack for all 5 line pairs
$\mathrm{l}_{4} \mathrm{~m}_{1} \quad\left(l \mathrm{~m}_{1}+l_{1} \mathrm{~m}_{2}\right) / 2 \quad \mathrm{l}_{2} \mathrm{~m}_{2}\left(\mathrm{l}_{3} \mathrm{~m}_{1}+1 \mathrm{~m}_{3}\right) / 2 \quad\left(\mathrm{l}_{2} \mathrm{~m}_{3}+l_{1} \mathrm{~m}_{2}\right) / 2$ $l_{1} \mathrm{l}_{1}\left(\mathrm{ll}_{1}+1 \mathrm{~m}_{2}\right) / 2 \quad l_{2} \mathrm{~m}_{2}\left(l_{3} \mathrm{~m}_{1}+1 \mathrm{~m}_{3}\right) / 2 \quad\left(l_{2} \mathrm{~m}_{3}+1 \mathrm{~m}_{2}\right) / 2-1$
 $\begin{array}{lll}l_{1} m_{1}\left(m_{1} m_{1}+1 \mathrm{~m}_{1}\right) \\ \left.\mathrm{m}_{2}\right) / 2 & \mathrm{l}_{2} \mathrm{~m}_{2} & \left(l_{3} \mathrm{~m}_{1}+1 \mathrm{~m}_{3}\right) / 2 \\ \mathrm{~m}_{1} & \left(l_{2} \mathrm{~m}_{3}+1 \mathrm{~m}_{2} \mathrm{~m}_{2}\right) / 2\end{array}$

- Solve for a,b,c,d,e,f with SVD (null space; Ax=0) \qquad
- Extract \mathbf{H}_{p} from \mathbf{C}_{∞}^{*}, using SVD

Polar Lines and Pole Points

- Line Conic C's tangent line L_{t} at point x_{t} by: $\mathbf{C} \mathbf{x}_{\mathrm{t}}=\mathrm{L}_{\mathrm{t}} \quad$ (given x_{t} is on the conic: $\mathbf{x}_{\mathrm{t}}^{\top} \mathbf{C} \mathrm{x}_{\mathrm{t}}=\mathbf{0}$) \qquad
\qquad
\qquad

Polar Lines and Pole Points

x_{p}

- Line Conic C's tangent line L_{t} at point x_{t} by:
$C x_{t}=L_{t} \quad$ (given x_{1} is on the conic: $x_{1}^{\top} C x_{1}=0$) \qquad
- But if \mathbf{x} is NOT on the conic? $\operatorname{try} \mathrm{Cx}_{\mathrm{p}}=\mathrm{L}_{\mathrm{p}}$

Polar Lines and Pole Points

- Line Conic C's tangent line L_{t} at point x_{t} by:

C $\mathrm{x}_{\mathrm{t}}=\mathrm{L}_{\mathrm{t}}$
(given $\boldsymbol{x}_{\mathrm{t}}$ is on the conic: $\mathbf{x}_{\mathrm{t}}{ }^{\top} \mathbf{C} \quad \mathrm{x}_{\mathrm{t}}=0$)
\qquad
\qquad
\qquad
\qquad

But if x is NOT on the conic? try $\mathrm{Cx}_{\mathrm{p}}=\mathrm{L}_{\mathrm{p}}$

- 'Polar line' $L_{p}=$ conic at p_{1}, p_{2} (find them?ugly)

Polar Lines and Pole Points

- Line Conic C's tangent line L_{t} at point x_{t} by:
$C x_{t}=L_{t} \quad$ (given x_{1} is on the conic: $x_{1}^{\top} C$ $x_{1}=0$) \qquad
- But if \mathbf{x} is NOT on the conic? try $\mathrm{Cx}_{\mathrm{p}}=\mathrm{L}_{\mathrm{p}}$
- 'Polar line' $L_{p}=$ conic at p_{1}, p_{2} (to find them?udy) \qquad
- p_{1}, p_{2} tangent lines meet at 'Pole point' x_{p} \qquad

SVDs and Conics

- Conics (both C and C*) are symmetric;
- SVD of any symmetric A is also symmetric: $\operatorname{SVD}(A)=$ USU ${ }^{\top}$
- All conic's singular values $\mathrm{s}_{\mathrm{i}}=0,1$, or -1 .
- Singular values classify conic type: (pg40)
$\mathbf{S}_{\mathbf{i}} \mathrm{val}^{\text {values }} \mid$ Equation \mid Type
$(1,1,1) \quad x^{2}+y^{2}+w^{2}=0 \quad$ imaginary-only
$(1,1,-1) \quad x^{2}+y^{2}-w^{2}=0 \quad$ circle
$(1,1,0) \quad x^{2}+y^{2}=0 \quad$ single real point $(\mathbf{0}, \mathbf{0}, \mathbf{1})$
$(1,-1,0) \quad x^{2}-y^{2}=0 \quad 2$ lines: $x+/-y$
$(1,0,0)\left|x^{2} \quad=0\right| 2$ co-located lines: $x=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Eigen-values,-vectors, Fixed pt \& line

\qquad

- Formalizes 'invariant' notion:
- if x is 'fixed' for H, then $H x$ only scales x
$\mathbf{H X}=\lambda \mathbf{X} \quad$ (λ is a constant scale factor)
$-\mathbf{x}$ is an 'eigenvector', $\boldsymbol{\lambda}$ is its 'eigenvalue'
- again, SVD helps you find them.
- Elaborate topic (but not hard). Skip for now.
- NEXT CLASS:
- Will post Homework 2, update schedule \qquad
- Will begin Chapter 2, '3D Projective Geometry'

