CS 395/495-26: Spring 2002

IBMR: Week 4 A

Chapter 2: 3D Projective Geometry

> Jack Tumblin jet@cs.northwestern.edu

3D Homogeneous Coordinates

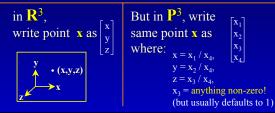
Extend Projective space from 2D to 3D:

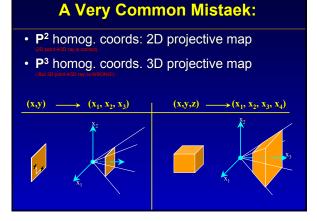
- P²:
 - From 2D 'world space' (x,y) make
 - -2D homogeneous coordinates (x₁,x₂,x₃).
 - 2D projective 'image space' $(x',y') = (x_1/x_3, x_2/x_3)$
- P³:
 - From 3D 'world space' (x,y,z) make
 - 3D homogeneous coordinates (x₁,x₂,x₃,x₄).
 - 3D projective 'image space'

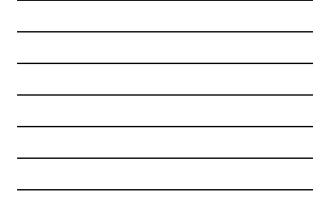
 $(x',y',z') = (x_1/x_4, x_2/x_4, x_3/x_4)$

3D Homogeneous Coordinates

- Unifies points and planes
- (but lines are messy)
- Puts perspective projection into matrix form
- No divide-by-zero, points at infinity defined...

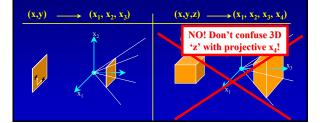






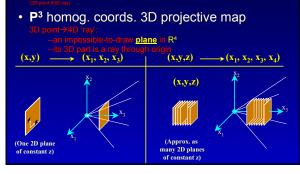
A Very Common Mistaek

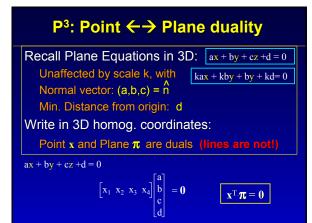
- P² homog. coords: 2D projective map
- **P**³ homog. coords. 3D projective map

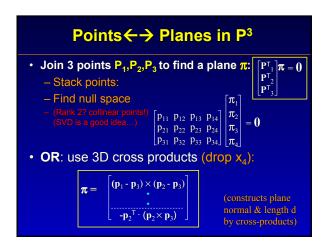


3D Homogeneous Coordinates

• P² homog. coords: 2D projective map







- To parameterize 3D space by plane π : (e.g. find u,v coordinates for all of 3D)
 - Recall $\,\pi\,$ is equiv. to plane's normal vector
 - Find 3 \perp vectors (e.g. null space of [0 0 0 π])
 - assemble them as columns of 4x3 M vector
 - Apply to <u>any</u> point **p**:

M p = uv

– Finds a 2D coords in P^2 plane (of π): uv =

Lines in P³: Awkward

• Geometrically:

- Intersection of 2 (or more) planes
- Line defines an axis or 'pencil' of planes
- Linear combo of 2 points (p1+ A(p2-P1)
- Have **4** DOF in P³; 4-vector won't do.
- Symbolically: three ways to write them:
 - Span or Null Space
 - Plűcker Matrix
 - Plűcker Line Coordinates

P³ Lines 1a: (Plane) Span

- Recall that a point x is on a plane π if $x^{\rm T}\pi=0$
- 2 given points A, B intersect with a 'pencil' of planes on a line
- Write line as that intersection: stack A^T, B^T to make 2x4 matrix W:

$$\mathbf{W} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \end{bmatrix}$$

• If line W contains the plane π , then $W \pi = 0$

P³ Lines 1b: (Point) Span

- Recall that a point x is on a plane π if $x^{T}\pi = 0$
- 2 given planes **P**,**Q** intersect at a 'pencil' of points on a line

- Write line as that intersection: stack P^T, Q^T to make 2x4 matrix W*:
 - $\mathbf{W}^* = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 & \mathbf{p}_4 \\ \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 & \mathbf{q}_4 \end{bmatrix}$
- If line W^* contains the point x, then $W^* x = 0$

