CS 395/495-26: Spring 2002

IBMR: Week 4 B

Chapter 2:

3D Projective Geometry

Jack Tumblin
jet@cs.northwestern.edu

Projective Transformations

> - Use H for transforms in P^{3} :
> - Has 15 DOF (4×4-1)
> - Superset of the $\mathrm{P}^{2} \mathrm{H}$ matrix:
> $\mathbf{H}=\left[\begin{array}{llll}h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44}\end{array}\right]$
> $H_{2}=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{21} \\ h_{31} & h_{32} & h_{33}\end{array}\right] \Longrightarrow\left[\begin{array}{llll}h_{11} & h_{12} & 0 & h_{13} \\ h_{21} & h_{22} & 0 & h_{23} \\ 0 & 0 & 0 & 0 \\ h_{31} & h_{32} & 0 & h_{33}\end{array}\right]$
\qquad

P3 Transformations

- Transform a point p or plane π with H:

$$
\mathbf{p}^{\prime}=\mathbf{H} \cdot \mathbf{p} \quad \pi^{\prime}=\mathbf{H}^{-\mathrm{T}} \cdot \pi
$$

- Lines 1: Transform a span:

$$
\mathbf{W W}^{\prime}=\mathbf{H} \cdot \mathbf{W} \quad \mathbf{W}^{*}{ }^{\prime}=\mathbf{H}^{-\mathrm{T}} \cdot \mathbf{W}^{*}
$$

- Lines 2: Transform a Plücker Matrix:

$$
\mathbf{L}^{\prime}=\mathbf{H} \cdot \mathbf{L} \cdot \mathrm{H}^{\top} \quad \mathbf{L}^{*} *=\mathrm{H}^{-\top} \mathbf{L}^{*} \cdot \mathbf{H}^{-1}
$$

\qquad
\qquad

The bits and pieces of H_{3}

H_{3} has 15 independent variables (DOF)

- Computer Graphics method (4×4 matrix):

3D Translation ($\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}$)
3D Scale $\quad\left(\mathrm{s}_{x}, \mathrm{~s}_{\mathrm{y}}, \mathrm{s}_{\mathrm{z}}\right)$
3D Rotation $\quad\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$
3D Skew ($\left.\mathrm{S}_{\mathrm{xy}}, \mathrm{S}_{\mathrm{xz}}, \mathrm{S}_{\mathrm{yz}}\right)$ (rarely nonzero)
3D Projection $\left(v_{x}, v_{y}, v_{z}\right) \quad\left(v_{x}, v_{y}\right.$ rarely nonzero)

- Computer Vision method(3D projective):

Euclidean -- 6DOF (3D translate $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}} \mathrm{t}_{\mathrm{z}} ; 3 \mathrm{D}$ rotate $\theta_{\mathrm{x}}, \theta_{\mathrm{y}}, \theta_{\mathrm{z}}$;)
Similarity -- 7DOF (add uniform scale s;)
Affine --12DOF (add skew (3DOF), directed scale(2))
Projective--15DOF (changes x_{4}; ?4D-rotation-like?)

The bits and pieces of H_{3}

H_{3} has 15 independent variables (DOF)

- Decomposable into 4 useful parts: (pg 59)

- Similarity $\mathrm{H}_{\mathbf{S}}$:
- 3D translate, rotate, uniform scale only (7DOF)
- Affine H_{A} :
non-uniform scale $(5 \mathrm{DOF})$ (Can move scaling
- Similarity H_{P} : DOF to affine to get 6DOF for both H_{S}
Projective coupling for X_{4} (3DOF)
and H_{A})

P 2 Conics \rightarrow P 3 Quadrics

Recall Conics are the ' x 2 family' in P^{2} :

- Point Conic: $\quad x^{\top} \mathbf{C} x=0$
- Line Conic: $\quad L^{\top} \mathbf{C}^{*} \mathrm{~L}=0$

\qquad
\qquad
\qquad
Similarly, Quadrics are the ' x^{2} family' in P^{3} :
\qquad
- Plane Quadric: $\quad \pi^{\top} \mathbf{Q}^{*} \pi=0$

Quadric Properties

- Quadric Q and point x_{p} Form a 'Polarity':
- maps point $\leftarrow \rightarrow$ plane, $\quad \boldsymbol{\pi}_{\mathrm{p}}=\mathbf{Q} \mathbf{x}_{\mathrm{p}}$
- Intersection of \mathbf{Q} with plane $\boldsymbol{\pi}_{p}$ is a conic \mathbf{C}_{p} \qquad
- Q's tangent planes at \mathbf{C}_{p} all intersect at \mathbf{X}_{p}

Quadric Properties

- Q and \mathbf{Q}^{*} are 4×4 symmetric matrices
- 10 params, but only 9 DOF
- Find from 9 points or planes (not lines!)
- Rank<3? 'Degenerate', fewer DOF
- Transformed Quadrics: \qquad
- Point Quadric: $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}=\mathbf{0}$ use $\mathbf{Q}^{\prime}=\mathbf{H}^{-\top} \mathbf{Q} \mathbf{H}$
- Plane Quadric: $\pi^{\top} \mathbf{Q}^{*} \pi=0$ use $\mathbf{Q}^{* \prime}=\mathbf{H} \mathbf{Q}^{*} \mathbf{H}^{\top}$

Quadric Properties

- Quadric Q is symmetric; thus SVD is too:

$$
\operatorname{SVD}\left(\mathbf{Q}^{\prime}\right)=\mathbf{U S U}^{\top}
$$

- Recall:
- Transformed Point Quadric: $\mathbf{Q}^{\prime}=\mathbf{H}^{-\top} \mathbf{Q} \mathbf{H}$
- Transformed Plane Quadric: $\mathbf{Q}^{* \prime}=\mathbf{H} \mathbf{Q}^{*} \mathbf{H}^{\top}$
- ? Know a quadric before \& after transform?
\rightarrow SVD helps find that transform \leftarrow
- SVD matrix 'S' can classify any quadric
- No real points, Sphere/ellipsoid, Hyperboloid, one point, origin cone, one line, two planes.
\qquad
\qquad

Quadric Properties

- SVD finds an orthornormal input basis U; in ' u ' coordinates, can write any quadric as: $\mathrm{au}_{1}{ }^{2}+\mathrm{bu}_{2}{ }^{2}+\mathrm{cu}_{3}{ }^{2}+\mathrm{d}=0$
- Classify quadrics by sign of a,b,c,d
- Rank 4 Quadrics; (nonzero a,b,c,d)
- 'No real points': a,b,c,d>0
- Sphere/ellipsoid: a,b,c >0, d<0
- Hyperboloid: $\quad d<0$, one of $a, b, c<0$
- Rank<4? Degenerate, Ruled Quadrics
- one point, cone at origin, single line, two planes, one plane.

Twisted Cubics

- Recall 2D conics are the ' x 2 family':
- Parameterize $x^{\top} \mathbf{C x}=\mathbf{0}$ by ' t '; find $\mathrm{x}_{1}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t})$.
- Write as matrix eqn:
- 1D Quadratic (t² family)
$\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ccc}\cdot & \dot{A} & \cdot \\ \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right] \begin{array}{l}1 \\ t^{2}\end{array}\right]$
- Easy to extend to P^{3} :
- A 1D cubic curve (${ }^{3}$ family)
- Wanders in P3
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{cccc}\cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & t_{1} \\ \cdot & \cdot & \cdot \\ t^{2} \\ t^{2}\end{array}\right]$
- Not restricted to plane

Twisted Cubics (TC)

- Has 12 DOF (15-3 due to 1-D parameter)
- Specified by 6 points in P^{3}
(each point constrains 2DOF)
- TC transformed by H \rightarrow another TC

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{ccc}
\cdot & \cdot & \cdot \\
: & A^{1} & \cdot \\
t \\
t & \cdot & \cdot
\end{array}\right]\left[\begin{array}{l}
t^{2} \\
t^{3}
\end{array}\right]
$$

\qquad
\qquad

$P^{3}{ }^{3}$ s Familiar Weirdnesses

- The plane at infinity: $\quad \pi_{\infty}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)^{\top}$
- Ideal Points at infinity: $p_{\infty}=\left(\begin{array}{llll}x_{1} & x_{2} & x_{3} & 0\end{array}\right)^{\top}$
- Parallel Planes intersect at a line within π_{∞} \qquad
- Intersection of π_{∞} with plane π is I_{∞} (in P^{2})
- Parallel Lines intersect at a point within π_{∞} \qquad
- π_{∞} affected ONLY by H_{p} (stays for $H_{S} H_{A}$) \qquad Both H_{p} and π_{∞} have 3DOF... (solve!)

P^{3} 's Familiar Weirdnesses

- In world space, we know $\pi_{\infty}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)^{\top}$
- Find π_{∞}^{\prime} in image space, solve for H_{p} :

$$
\pi_{\infty}^{\prime}=\mathrm{H}_{\mathrm{p}}^{-\mathrm{T}} \pi_{\infty}
$$

But How?

\qquad

- Absolute Conic: $\mathrm{C}_{\infty}{ }_{\infty} \mathrm{AEmbedded}$ in π_{∞}
- Absolute Dual Quadric
- very similar to \mathbf{C}_{∞}^{*} process... \qquad
\qquad

END2

