CS 395/495-26: Spring 2002

IBMR: Week 4 B

Chapter 2: 3D Projective Geometry

> Jack Tumblin jet@cs.northwestern.edu

 $\mathbf{L}^{*} = \mathbf{H} \cdot \mathbf{L} \cdot \mathbf{H}^{\mathsf{T}} \qquad \mathbf{L}^{*} \cdot = \mathbf{H}^{-\mathsf{T}} \cdot \mathbf{L}^{*} \cdot \mathbf{H}^{-1}$

The bits and pieces of H₃

H₃ has 15 independent variables (DOF)

- Computer Graphics method (4x4 matrix):

 $(\hat{s}_{xy}, \hat{s}_{xz}, \hat{s}_{yz})$ (rarely nonzero) n (v_x, v_y, v_z) $(v_x, v_y$ rarely nonzero)

 Computer Vision method(3D projective): Euclidean -- 6DOF(3D translate t_x,t_y t_z: 3D rotate θ_x,θ_y,θ_z:) Similarity -- 7DOF (add uniform scale s;) Affine --12DOF (add skew (3DOF), directed scale(2)) Projective--15DOF (changes x_x; ?4D-rotation-like?)

P^2 Conics $\rightarrow P^3$ Quadrics

 $\mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} = \mathbf{0}$

 $L^T C^* L = 0$

Recall Conics are the 'x² family' in P²:

Point Conic: Line Conic:

C, C* ==
3x3 matri

Similarly, Quadrics are the 'x² family' in P³:

- Point Quadric: $\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} = \mathbf{0}$
- Plane Quadric: $\pi^T \mathbf{Q}^* \pi = \mathbf{0}$

Quadric Properties

- **Q** and **Q*** are 4x4 symmetric matrices
- 10 params, but only 9 DOF
 - Find from 9 points or planes (not lines!)Rank<3? 'Degenerate', fewer DOF
- Transformed Quadrics:
 - Point Quadric: $\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} = \mathbf{0}$ use $\mathbf{Q}' = \mathbf{H}^{\mathsf{T}}\mathbf{Q}\mathbf{H}$
 - Plane Quadric: $\pi^T \mathbf{Q}^* \pi = \mathbf{0}$ use $\mathbf{Q}^{**} = \mathbf{H} \mathbf{Q}^* \mathbf{H}^T$

Quadric Properties

- Quadric Q is symmetric; thus SVD is too:
 SVD(Q') = USU^T
- · Recall:
 - Transformed Point Quadric: Q' = H^{-T} Q H
 - Transformed Plane Quadric: Q*' = H Q* H^T
- ? Know a quadric before & after transform?
 → SVD helps find that transform
- SVD matrix 'S' can classify any quadric

 No real points, Sphere/ellipsoid, Hyperboloid, one point, origin cone, one line, two planes... (see pg 55)

Quadric Properties

- SVD finds an orthornormal input basis U; in 'u' coordinates, can write any quadric as: au₁² + bu₂² + cu₃² + d = 0
- Classify quadrics by sign of a,b,c,d
- Rank 4 Quadrics; (nonzero a,b,c,d)
 - 'No real points': a,b,c,d > 0
 - Sphere/ellipsoid: a,b,c > 0, d<0
 - Hyperboloid: d<0, one of a,b,c <0
- Rank<4? Degenerate, Ruled Quadrics

 one point, cone at origin, single line, two planes, one plane.

Twisted Cubics

- Recall 2D conics are the 'x² family':
 - Parameterize $\mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} = \mathbf{0}$ by 't'; find $x_1(t), x_2(t)...$
 - Write as matrix eqn:
 - 1D Quadratic (t² family)

 $\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{A}^* & \cdot \end{bmatrix} \begin{bmatrix} 1 \\ t \\ t^2 \\ t^2 \end{bmatrix}$

- Easy to extend to P³:
 - A 1D cubic curve (t³ family)
 - Wanders in P³

 - Not restricted to plane

Twisted Cubics (TC)

- Has 12 DOF (15 3 due to 1-D parameter)
- Specified by 6 points in P³ (each point constrains 2DOF)
- TC transformed by $H \rightarrow$ another TC

P³'s Familiar Weirdnesses

- The plane at infinity:
- $\pi_{\infty} = (0 \ 0 \ 0 \ 1)^{\mathsf{T}}$
- Ideal Points at infinity: $p_{\infty} = (x_1 x_2 x_3 0)^T$
- Parallel Planes intersect at a line within $\pi_{\!\scriptscriptstyle \infty}$
- Intersection of $\pi_{\!\scriptscriptstyle \infty}$ with plane π is $I_{\!\scriptscriptstyle \infty}$ (in $\mathsf{P}^2)$
- Parallel Lines intersect at a point within $\pi_{\!\scriptscriptstyle\infty}$
- π_{∞} affected ONLY by H_p (stays for H_SH_A) Both H_Pand π_{∞} have 3DOF... (solve!)

P³'s Familiar Weirdnesses

- In world space, we know $\pi_{\infty} = (0 \ 0 \ 0 \ 1)^{T}$
- Find π'_{∞} in image space, solve for H_p: $\pi'_{\infty} = H_p^{-T} \pi_{\infty}$

But How?

- Absolute Conic: C*_AEmbedded in π_{\sim}
- Absolute Dual Quadric
- very similar to C* process...

END

