IBMR: Week 5 A

Finish Chapter 2:

3D Projective Geometry

+ Applications

Jack Tumblin
jet@cs.northwestern.edu

Project 2 Hints

- 4 point correspondence:
- Book shows: $x^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=\left(h_{11} x+h_{12} y+h_{13}\right)$
$y^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=\left(h_{11} x+h_{12} y+h_{13}\right)$
- Rearrange: known vector (dot) unknown vector
$\left[\begin{array}{lllllllll}\mathrm{x} & \mathrm{y} & 1 & 0 & 0 & 0 & -x^{\prime} x & -x^{\prime} y & -x^{\prime}\end{array}\right]\left[h_{11}\right]=0$
$\left[\begin{array}{lllllllll}0 & 0 & 0 & x & y & 1 & -y^{\prime} x & -y^{\prime} y & -y^{\prime}\end{array}\right] h_{12}$
- stack, solve for null space.
- Hint Files
- Added 'max' commands, examples
- Make, test your own H matrices!

Quadrics Summary

Quadrics are the ' x 2 family' in P^{3} :

- Point Quadric: $\quad \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}=\mathbf{0}$
- Plane Quadric: $\quad \pi^{\top} Q^{*} \pi=0$
- Transformed Quadrics:
- Point Quadric:
$\mathbf{Q}^{\prime}=\mathbf{H}^{-\top} \mathbf{Q} \mathbf{H}$
- Plane Quadric:
$\mathbf{Q}^{* \prime}=\mathbf{H} \mathbf{Q}^{*} \mathbf{H}^{\top}$

- Symmetric Q, Q* matrices:
- $\mathbf{1 0}$ parameters but $\mathbf{9}$ DOF; 9 points or planes
- (or less if degenerate...)
-4×4 symmetric, so SVD $(\mathbf{Q})=\mathbf{U S U}^{\top}$

Quadrics Summary

- $\operatorname{SVD}(\mathrm{Q})=\mathbf{U S U T}$:
- U columns are quadric's axes
- S diagonal elements: scale
- On U axes, write any quadric as: $a u_{1}^{2}+\mathrm{bu}_{2}^{2}+\mathrm{cu}_{3}^{2}+\mathrm{d}=0$
- Classify quadrics by
- sign of a,b,c,d: $(>0,0,<0)$
- Book's method:
- scale a,b,c,d to (+1, 0, -1)
- classify by Q's rank and (a+b+c+d)

Quadrics Summary

$P^{3}{ }^{3}$ s Familiar Weirdnesses

- The plane at infinity:
(this is the 2 D set of all...
$\pi_{\infty}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)^{\top}$
$d=p_{\infty}=\left(\begin{array}{llll}x_{1} & x_{2} & x_{3} & 0\end{array}\right)^{\top}$ - (Also called 'direction' d in book)
- Parallel Planes intersect at a line within π_{∞}
- Parallel Lines intersect at a point within π_{∞}
- Any plane π intersects π_{∞} at line I_{∞} (put π in P^{2})

d
 $\overrightarrow{1 / x_{4}}$ as $x 4 \rightarrow 0$, points $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \rightarrow$ infinity

P^{3} 's Familiar Weirdnesses

- The plane at infinity: $\quad \pi_{\infty}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)^{\top}$ \qquad
- Only H_{p} transforms π_{∞} (stays π_{∞} for $\mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{A}}$)
- Recall $\pi^{\prime}=H^{-T} . \pi$

Careful! H_{S}, and H_{A} and move points within π_{∞}

- Both H_{p} and π_{∞} have 3DOF \qquad
- use one to find the other:

Find π_{∞} ' in image space; use π_{∞} in world-space to find H_{p}

- Find directions in π_{∞} with known angles in P^{3}
\qquad
\qquad

New Weirdness: Absolute Conic Ω_{∞}

\qquad

- WHY learn Ω_{∞} ? Similar to C_{∞} for $P^{2} \ldots$
- Angles from directions ($\mathrm{d}_{1}, \mathrm{~d}_{2}$) or planes $\left(\pi_{1}, \pi_{2}\right)$
$-\pi_{\infty}$ has 3DOF for $\mathrm{H}_{\mathrm{P}} ; \Omega_{\infty}$ has 5DOF for H_{A}
- Ω_{∞} Requires TWO equations: \qquad

$\Omega_{\infty}: \mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}+\mathrm{x}_{3}{ }^{2}=0$,	or '2D point conic where $\mathrm{C}=\mathrm{I}$ '
x_{4}	$=0$,

- Ω_{∞} is complex 2D Point Conic on the π_{∞} plane
- Recall plane at infinity $\pi_{\infty}=[0,0,0,1]^{\top}$ \qquad
holds 'directions' $\mathrm{d}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, 0\right]^{\top}$

New Weirdness: Absolute Conic Ω_{∞}

\qquad

- Ω_{∞} is complex 2D Point Conic on the π_{∞} plane

$x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=0$,	or '2D point conic where $C=I$
$x_{4}=0$,	
or 'all points are on $\pi_{\infty}{ }^{\prime}$	

- Only $H_{A} H_{p}$ transforms Ω_{∞} (stays Ω_{∞} for H_{S}) \qquad
- All circles (in any π) intersect Ω_{∞} circular pts. - (recall: circular pts. hold 2 axes: $\mathrm{x} \pm i \mathrm{i}$)
- All spheres (in P^{3}) intersect π_{∞} at all Ω_{∞} pts.
\qquad
\qquad
\qquad
\qquad
\qquad

New Weirdness: Absolute Conic Ω_{∞}

Ω_{∞} measures angles between Directions $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$

- World-space Ω_{∞} is $I_{3 \times 3}$ (ident. matrix) within π_{∞}
- Image-space Ω_{∞} ' is transformed
- Euclidean world-space angle $\boldsymbol{\theta}$ is given by:

$$
\cos (\theta)=\frac{\left(\mathrm{d}_{1}^{\mathrm{T}} \Omega_{\infty}{ }^{\prime} \mathrm{d}_{2}\right)}{\sqrt{\left(\mathrm{d}_{1}^{\mathrm{T}} \Omega_{\infty}{ }^{\prime} \mathrm{d}_{1}\right)\left(\mathrm{d}_{2}^{\mathrm{T}} \Omega_{\infty}{ }^{\prime} \mathrm{d}_{2}\right)}}
$$

- Directions $\mathrm{d}_{1}, \mathrm{~d}_{2}$ are orthogonal iff $\mathrm{d}_{1}{ }^{\mathrm{T}} \Omega_{\infty}{ }^{\prime} \mathrm{d}_{2}=0$

What is $\boldsymbol{\Omega}_{\infty}$ in P3? Perhaps $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$? but. 0100 001 (0) 0 (0 (do not change)

Absolute Dual Quadric $\mathbf{Q}^{*}{ }_{\infty}$

Exact Dual to Absolute Conic Ω_{∞} in plane π_{∞}

- Any conic in a plane $=$ a degenerate quadric
- (even though plane π_{∞} consists of all points at infinity)
- (even though conic Ω_{∞} has no real points, all 'outer limits' of π_{∞})
$\mathrm{Q}_{\infty}{ }_{\infty}$ is a Plane Quadric that matches Ω_{∞}
- Defined by tangent planes π (e.g. $\pi^{\top} Q^{*}{ }_{\infty} \pi=0$)
- Conic Ω_{∞} is on the 'rim' of quadric Q_{∞}^{*}
- In world space, $\mathrm{Q}_{\infty}^{*}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
- Image space: 8DOF $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right.$
(up to similarity) $\quad\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Absolute Dual Quadric \mathbf{Q}^{*}

$-\mathrm{Q}_{\infty}^{*}$ always has infinity plane π_{∞} as tangent

$$
\mathrm{Q}_{\infty}^{*} \pi_{\infty}=0 \text { and } \mathrm{Q}_{\infty}^{*} \pi_{\infty}^{\prime}=0
$$

- Find angles between planes π_{1}, π_{2} with Q_{∞}^{*} :

$$
\cos (\theta)=\frac{\left(\pi_{1}^{\mathrm{T}} \mathrm{Q}_{\infty}^{*}{ }_{\infty} \pi_{2}\right)}{\sqrt{\left(\pi_{1}{ }^{\mathrm{T}} \mathrm{Q}_{\infty}^{*} \pi_{1}\right)\left(\pi_{2}{ }^{\mathrm{T}} \mathrm{Q}_{\infty}^{*} \pi_{2}\right)}}
$$

- Can test for \perp planes $\pi_{1}, \pi_{2}: \pi_{1}{ }^{T} Q_{\infty}^{*}{ }_{\infty} \pi_{2}=0$

How can we find $Q^{*}{ }_{\infty}$ '?

- From \perp plane pairs (flatten, stack, null space...)

How can we use it?

- Transforms: " Q^{*} 。 fixed iff H is a similarity" means

Changes $\mathrm{Q}^{*}{ }_{\infty}$ to $\mathrm{Q}^{*}{ }_{\infty}$ unless H is a similarity (Recall that $\mathrm{Q}_{\infty}^{*}{ }_{\infty}=\mathrm{H} \mathrm{Q}^{*}{ }_{\infty} \mathrm{H}^{\top}$)

- THUS known $Q^{*}{ }_{\infty}{ }^{\prime}$ can solve for $H_{A} H_{P}$
- $Q^{*}{ }_{\infty}{ }^{\prime}$ is symmetric, so $\operatorname{SVD}()=U S U^{\top}$; so by inspection: $H=U$

What else can we DO in P^{3} ?

View Interpolationd Find H (or its parts: $\mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{P}}$)

- By \perp Plane Pairs $\quad\left(\pi_{1}{ }^{\top} Q_{\infty}^{*} \pi_{2}=0\right)$..
- Find $Q^{*}{ }_{\infty}$ by flatten/stack/null space method
- Find $\mathbf{H}_{A} \mathbf{H}_{P}$ from $Q_{\infty}{ }_{\infty} \rightarrow Q^{*}{ }_{\infty}$ relation
(symmetric, so use SVD)
- By Point (or Plane) Correspondence
- Can find full H (15DOF) in \mathbf{P}^{3} with 5 pts (planes)
- Just extend the \mathbf{P}^{3} method (see Project 2)

But what can we DO in P3?

View Interpolation! Find H (or its parts: $\mathrm{H}_{\mathrm{S}} \mathbf{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{P}}$)

- By Parallel Plane pairs (they intersect at π_{∞}^{\prime})
- Find π_{∞}^{\prime} by flatten/stack/null space method,
- Solve for H_{p} using $H_{P}{ }^{-\top} \pi_{\infty}=\pi_{\infty}^{\prime}$
- By \perp Direction Pairs $\left(d_{1} \Omega_{\infty}^{\prime} d_{2}=0\right)$..
- Find Ω_{∞}^{\prime} from flatten/stack/null space method,
- Find H_{A} from $\Omega_{\infty} \rightarrow \Omega_{\infty}^{\prime}$ relation
- (symmetric, so use SVD...)

What can we DO in P^{3} ?

Open questions to ponder:

- Can you do line-correspondence in P^{2} ? in P^{3} ?
- How would you find angle between two lines whose intersection is NOT the origin?
- Can you find \mathbf{H} from known angles, $\boldsymbol{\theta} \neq \mathbf{9 0 ^ { \circ }}$?
- How can we adapt P^{2} 'vanishing point' methods to P^{3} ?
- How might you find \mathbf{H} using twisted cubics?
using the Screw Decomposition?
- Given full 3D world-space positions for pixels ('image+depth), what H matrix would you use to 'move the camera to a new position'?
- What happens to the image when you change the projective transformations \mathbf{H} (bottom row)?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

