CS 395/495-26: Spring 2002

IBMR: Week 5 A

Finish Chapter 2: 3D Projective Geometry + Applications

> Jack Tumblin jet@cs.northwestern.edu

Project 2 Hints

• 4 point correspondence:

– Book shows: $x'(h_{31}x + h_{32}y + h_{33}) = (h_{11}x + h_{12}y + h_{13})$ y' $(h_{31}x + h_{32}y + h_{33}) = (h_{11}x + h_{12}y + h_{13})$ - Rearrange: known vector (dot) unknown vector

 $[x \ y \ 1 \ 0 \ 0 \ -x'x \ -x'y \ -x'][h_{11}]$ = 0 $\begin{bmatrix} x & y & 1 \\ 0 & 0 & x & y & 1 & -y'x & -y'y & -y' \end{bmatrix} \mathbf{h}_{12}$

- stack, solve for null space...

Hint Files

- Added 'max' commands, examples

- Make, test your own H matrices!

Quadrics are the 'x² family' in P³:

- Point Quadric: $\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} = \mathbf{0}$
- Plane Quadric: $\pi^{\mathsf{T}} \mathbf{Q}^* \pi = \mathbf{0}$
- Transformed Quadrics:
 - Point Quadric: $\mathbf{Q}' = \mathbf{H}^{-\top} \mathbf{Q} \mathbf{H}$
 - Plane Quadric: $\mathbf{Q}^{*'} = \mathbf{H} \, \mathbf{Q}^* \, \mathbf{H}^{\mathsf{T}}$
- Symmetric Q, Q* matrices:
 - 10 parameters but 9 DOF; 9 points or planes
 - (or less if degenerate...)
 - 4x4 symmetric, so SVD(Q) = USU^T

h₁₃

h₂₁ h₂₂

h₂₃

h₃₁

h₃₂ h,

Quadrics Summary

- SVD(Q) =**USU**^T:
 - U columns are quadric's axes
 - S diagonal elements: scale
- On U axes, write any quadric as: $au_1^2 + bu_2^2 + cu_3^2 + d = 0$
- Classify quadrics by
 sign of a,b,c,d: (>0, 0, <0)
- Book's method:
 scale a,b,c,d to (+1, 0, -1)
 classify by Q's rank and (a+b+c+d)

quadric types

P³'s Familiar Weirdnesses

• The plane at infinity:

 $\pi_{\infty} = (0 \ 0 \ 0 \ 1)^{\mathsf{T}}$

- Only H_p transforms π_{∞} (stays π_{∞} for $H_S H_A$) – Recall $\pi^2 = H^{-T} \pi$
 - Carefull H_s, and H_A and move points within π_{∞}
- Both H_P and π_{ω} have 3DOF
 - use one to find the other:
 - Find $\pi_{\tt \omega}{}'$ in image space; use $\pi_{\tt \omega}$ in world-space to find $H_{\tt P}$
 - + Find directions in $\pi_{\!\scriptscriptstyle \infty}$ with known angles in ${\sf P}^{\scriptscriptstyle 3}$

New Weirdness: Absolute Conic Ω_{∞}

- WHY learn Ω_{∞} ? Similar to C_{∞} for P²... – Angles from directions (d₁, d₂) or planes (π_1 , π_2) – π_{∞} has 3DOF for H_P; Ω_{∞} has 5DOF for H_A
- Ω_{∞} Requires TWO equations: Ω_{∞} : $x_1^2 + x_2^2 + x_3^2 = 0$, or '2D point conic where C = I'

 $x_4 = 0$, or 'all points are on π_m '

- Ω_{∞} is complex 2D Point Conic on the π_{∞} plane (21212)
- Recall plane at infinity $\pi_{\omega} = [0, 0, 0, 1]^T$ holds 'directions' $\mathbf{d} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, 0]^T$

New Weirdness: Absolute Conic Ω_{∞}

- Ω_{∞} is complex 2D Point Conic on the π_{∞} plane $x_1^2 + x_2^2 + x_3^2 = 0$, or '2D point conic where C = I' $x_4 = 0$, or 'all points are on π_{∞} '
- Only $H_A H_P$ transforms Ω_{∞} (stays Ω_{∞} for H_S)
- All circles (in any π) intersect Ω_∞ circular pts.
 (recall: circular pts. hold 2 axes: x ± *i*y)
- All spheres (in P³) intersect π_{∞} at all Ω_{∞} pts. (not clear what this reveals to us)

Absolute Dual Quadric Q*

Exact Dual to Absolute Conic Ω_{\sim} in plane π_{\sim}

- Any conic in a plane = a degenerate quadric
 - (even though plane $\pi_{\!\scriptscriptstyle \infty}$ consists of all points at infinity)

Q^*_{∞} is a Plane Quadric that matches Ω_{∞}

- Defined by tangent planes π (e.g. $\pi^T Q^*_{\infty} \pi = 0$)
- Conic $\Omega_{\!\scriptscriptstyle \infty}$ is on the 'rim' of quadric $Q^{\star}_{\!\scriptscriptstyle \infty}$
- In world space, $Q^*_{\infty} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

– Image space: 8DOF

0 1 0 0 0 0 1 0 0 0 0 0

Absolute Dual Quadric Q*...

- In world space,
$$\mathbf{Q}^*_{\infty} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 $\pi_{\infty} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$
- \mathbf{Q}^*_{∞} always has infinity plane π_{∞} as tangen

$$Q_{-}^{*}\pi_{-}=0$$
 and $Q_{-}^{*'}\pi_{-}=0$

– Find angles between planes π_1, π_2 with Q^*_{∞} :

$$\cos(\theta) = \frac{(\pi_1^{\mathrm{T}} \mathbf{Q}^{\star}, \pi_2)}{\sqrt{(\pi_1^{\mathrm{T}} \mathbf{Q}^{\star}, \pi_1)(\pi_2^{\mathrm{T}} \mathbf{Q}^{\star}, \pi_2)}}$$

- Can test for \perp planes π_1, π_2 : $\pi_1^T \mathbb{Q}^*_{\infty}, \pi_2 = 0$ End of Chapter 2. Now what?

Absolute Dual Quadric Q*...

- How can we find Q^{*}..'?
 - From \perp plane pairs (flatten, stack, null space...)

How can we use it?

- $\begin{array}{l} \mbox{Transforms: $``a^*_$ fixed iff H is a similarity' means} \\ \mbox{Changes $Q^*_$ to $Q^*_$ unless H is a similarity} \\ \mbox{(Recall that $Q^*_$ '= H $Q^*_$ H^T$)} \end{array}$
- THUS known Q*...' can solve for H_AH_P
 - Q^{*}^o is symmetric, so SVD()=USU^T; so by inspection: H=U

What else can we DO in P³?

View Interpolation! Find H (or its parts:H_sH_AH_P)

- By \perp Plane Pairs $(\pi_1^T Q^*_{\infty} \pi_2 = 0)...$ – Find Q^*_{∞} by flatten/stack/null space method
 - Find H_AH_P from Q^{*}_∞→Q^{*}_∞relation (symmetric, so use SVD)
- By Point (or Plane) Correspondence
 Can find full H (15DOF) in P³ with 5 pts (planes)
 Just extend the P³ method (see Project 2)

But what can we DO in P³?

View Interpolation! Find H (or its parts:H_sH_AH_P)

- By Parallel Plane pairs (they intersect at π'_∞)
 Find π'_∞ by flatten/stack/null space method,
 - Solve for H_p using $H_{P}^{-T} \pi_{\infty} = \pi'_{\infty}$
- By ⊥ Direction Pairs (d₁ Ω'_∞ d₂ = 0)...
 Find Ω'_∞ from flatten/stack/null space method,
 - Find Ω_{∞} from flatten/stack/null space method, - Find H_A from $\Omega_{\infty} \rightarrow \Omega'_{\infty}$ relation
 - (symmetric, so use SVD...)

What can we DO in P³?

Open questions to ponder:

– Can you do line-correspondence in P²? in P³?

- How would you find angle between two lines whose intersection is NOT the origin?
- Can you find **H** from known angles, $\theta \neq 90^{\circ}$?
- How can we adapt P² 'vanishing point' methods to P³?
- How might you find **H** using twisted cubics? using the Screw Decomposition?
- Given full 3D world-space positions for pixels ('image+depth), what H matrix would you use to 'move the camera to a new position'?
- What happens to the image when you change the projective transformations H (bottom row)?

END